Document number: P0232R0

Date: 2016-02-12

Project: Programming Language C++, SG14, SG1, EWG

Authors: Paul McKenney, Michael Wong, Maged Michael

Reply to: paulmckrecu@gmail.com, fraggamuffin@gmail.com, maged.michael@acm.org

A Concurrency ToolKit for Structured
Deferral or Optimistic Speculation

. Introduction
. Schrédinger’'s Zoo
. Trading Certainty for Performance and Scalability
. Performance Comparison
. Which to Choose?
. When to Procrastinate?

6.1 Procrastination Implementations

. Conclusion and goals

. References

o O [N =

~

(ee]

1. Introduction

This papers introduce the concept of a Concurrency ToolKit that contains the recently added
atomic smart pointer [Sut15] along with the proposed lock-free algorithms on Hazard Pointers
[Mic16] and Read-Copy-Update [McK15] and analyzes their motivation in a humorous way,
while showing where they can be useful, and their performance differences.

It is also an excerpt from “Is Parallel Programming Hard, And, If So, What Can You Do
About It?” [Perf] along with analysis of “Reference Counting through Atomic Smart
Pointers” [Sut15] to show the advantages and disadvantages of each technique and to
offer motivation supporting why we would want each of these techniques to be
standardized in C++.

2. Schrodinger's Zoo

We will use the Schrodinger’'s Zoo application to evaluate performance [McK13].
Schrédinger has a zoo containing a large number of animals, and he would like to track

mailto:paulmckrcu@gmail.com
mailto:fraggamuffin@gmail.com

them using an in-memory database with each animal in the zoo represented by a data
item in this database. Each animal has a unique name that is used as a key, with a
variety of data tracked for each animal.

Births, captures, and purchases result in insertions, while deaths, releases, and sales
result in deletions. Because Schrddinger’s zoo contains a large quantity of short-lived
animals, including mice and insects, the database must be able to support a high
update rate.

Those interested in Schrédinger’s animals can query them, however, Schrédinger has
noted extremely high rates of queries for his cat, so much so that he suspects that his
mice might be using the database to check up on their nemesis. This means that
Schrédinger’s application must be able to support a high rate of queries to a single data
element.

On the other hand, it is impossible to say exactly when a given birth or death occurs.
For example, a cat’s heart rate will normally be between 140 and 220 beats per minute
[Wiki16], so that it is necessary to wait many seconds after the last heartbeat before
death can be pronounced. In the meantime, different observers might disagree as to
whether the cat is living or dead. Schrodinger’s own work [Sch35] and that of his
colleague Heisenberg [Hei27] has helped Schrodinger to cope with this sort of
ambiguity and uncertainty. In fact, Schrédinger’s design goes further by actually
exploiting ambiguity and uncertainty. He does this by refusing to require that queries,
insertions, and deletions be fully ordered. As we will see, this design choice will enable
extremely high-speed queries.

Nor is this situation limited to Schrddinger’'s zoo’s database. Any situation in which data
within the computer is a function of events and entities outside the computer, similar
uncertainties will be forced by speed-of-light delays if by nothing else. By the time a
given change has been committed to the system’s memory, it might well have been
superseded by some other change. It might not even be possible to determine the time
order of several external events. Worse yet, there are situations where protocols
introduce additional delays, for example, such delays are common practice in Internet
routing protocols. These routing-protocol delays are absolutely necessary in order to
preserve Internet stability, however, they introduce long periods during which a given
system connected to Internet might be uncertain of Internet’s topology. The applicability
of unordered lookups is thus quite broad.

3. Trading Certainty for Performance and Scalability

Clinging to certainty is all too human, but it can also be all too bad for your software’s
performance and scalability. For example, the following pattern is quite common:

Acquire a lock

While holding the lock, compute some property of data protected by that lock
Release the lock

Use the computed property

Howh =

In step 4, it is uncertain whether or not the computed property still holds. As soon as
the lock was dropped in step 3, some other thread might have acquired that lock and
carried out arbitrarily large changes to the protected data.

If the computation of the property did not update the data structure, it might be possible
to substitute lightweight synchronization for the lock acquisition and release in steps 1
and 3. Two examples of such lightweight synchronization are hazard pointers (see
P0233R0 [Mic16]) and RCU (see P0279R0 [McK16]). Both of these synchronization
mechanisms defer the destructive portion of each update (for example, the
memory-reclamation portion) in order to allow lightweight readers. Such readers avoid
atomic read-modify-write operations entirely and avoid cache misses in the common
case.

4. Performance Comparison

Schrédinger has wisely selected a few benchmarks for the database tracking his zoo,
which run on a four-socket 32-core (64 hardware threads) Westmere-EX x86 system.
The first benchmark is read-only, testing high query loads. The results for a
1024-bucket hash table are shown in the next figure. This benchmark in Figure 1
shows that global locking is a spectacularly bad choice (which should be no surprise),
but that per-bucket locking is also disastrous above 8 CPUs (which might be more of a
surprise). The problem with per-bucket locking is that there is no read-side locality,
which results in cache thrashing on the lock data structure. This cache thrashing
become quite expensive across socket boundaries, hence the cliff beyond 8 CPUs (note
the log-log nature of the plot) in Figure 1. In contrast, both hazard pointers and RCU do
quite well, both offering not only near-linear scalability, but near-optimal performance.

Ta+06 g T Ty
< .z"-.-:"" 3
E #.:,-.__5:'
% idaal ‘n,_.;s; 1
<57 RCU, hazpl
£ 100000 F T =R
o
5 F
B L 5
2 7 et —
g :{jff -
S 10000 f .
g = 3
o glabal
Iﬂm 'l L 13 l|||| 1 1 11 1 8is
i 10 100

Muminar of CPLs/Thraads

Figure 1. This shows RCU and hazard Pointer compared to global locking which is a
spectacularly bad choice (which should be no surprise), but that per-bucket locking is
also disastrous above 8 CPUs, when compared to ideal

These results are quite encouraging for RCU and for hazard pointers, but Schrodinger
is well aware of the extreme levels of interest in the well-being of his cat, so much so
that he suspects that his rats are using his database to track the whereabouts of their
potential predator. This calls for a benchmark in Figure 2 testing queries weighted
heavily to the cat, for example, running queries on 60 CPUs and varying the number of
CPUs that are repeatedly looking up only the cat. The results are shown on the next
plot. As can be seen, bucket-locking’s performance converges on that of global locking
as the number of cat-querying CPUs increases. The performance of global locking
increases with increasing cat intensity, and this is due to cache locality. Please note
that even with this increase, the performance of global locking remains abysmal at more
than two orders of magnitude slower than that of either hazard pointers or RCU.

1a+08 T — T Ty

£ iooom [AG, o22 -
g I 225" hazplr

= o000 BT .

E L -

~——_bucks .

& wowf “m__+¢?f -

& I § 1

q I e)

Iﬂ 'l L i3 8191 I 1 1 11 1 8is

1 10 100

Mumibar of CPUs/Thraads Looking Up Tha Cal

Figure 2: benchmark testing queries weighted heavily to the cat

Finally, Schrodinger must look at updates, running a benchmark that varies the number
of CPUs doing updates out of a total of 60 CPUs. This results in the two plots shown
below in Figure 3 and 4, with the left-hand plot showing number of lookups (which of
course drops to zero when all 60 CPUs are doing updates) and with the right-hand plot
showing number of updates. This splits into three regimes: RCU does better at update
rate, hazard pointers does better at moderate update rates, and bucket locking does
better at very high update rates. This last should not be surprising: Both RCU and
hazard pointers incur additional reclamation overhead on updates, and at high update
rates there are not enough readers to offset this added cost.

1a+06 p T — T T Ty 100000 3 T T T T T T T Ty
[Rou] i bucket]
) - g, .) It
E 100000 F hazptr -l .] E 10000 hEIszr ara® .
bucket R i 3 - e
E 10000 M, - = [. T RCU]
= - " . = - -
5 | ",;. | E 1000 :r " -!
F ool — 118 | -
-E i global P E_ 100 b]
L 100 | \ . i ﬁ,f" glabal]
| i b]
i0 i e s ssrl I i ||I|i|.|. 10 2 roua el 1 1§ 5 1 8ps
1 10 100 i i0 100
Muminar of CPUs Daing Updatas Mumibar af CPLs Daing Updatas

Figure 3: Number of lookups/ms vs CPUs doing updates Figure 4: Number of Updates/ms vs CPUs doing updates

5. Which to Choose?

Bucket locking is very clearly only useful at very high update rates. As a rough rule of
thumb, from a performance and scalability viewpoint, you should use RCU for
read-intensive workloads and hazard pointers for workloads that have significant update
rates (more than 10% updates based on the above benchmarks). However, there are
other considerations, and these are summarized in the following table taken from
Hazard Pointer P0233R0 [Mic16] comparing Reference Counting (as proposed in Smart
Pointer and Atomic Smart Pointer), RCU and Hazard Pointers.

Reference Counting | RCU Hazard Pointers

Unreclaimed Bounded Unbounded Bounded
objects

Non-blocking Lock-free Wait-free Lock-free.
traversal

Non-blocking Lock-free Blocking Lock-free

reclamation

Contention among | Can be very high No contention No contention

readers

Traversal speed Atomic updates No or low Store-load fence
overhead

Reference Conditional Unconditional Conditional

acquisition

Automatic Yes No No

reclamation

Advantages

This leaves open the question of reference counting, such as that used by smart
pointers. This question can be answered by considering the cache-thrashing effects of
per-access reference-count manipulations [McK13, Figure 2]. Our experience leads us
to believe that a successful optimization of reference counting would result in something
like either hazard pointers or RCU, depending on the design choices. You are of course
welcome to try to prove us wrong!

6. When to Procrastinate?

Although large read-side performance benefits can be obtained from both hazard
pointers and RCU, both are specialized mechanisms that are almost always used in
conjunction with other mechanisms. This raises the question as to when hazard pointers
and RCU should be used. Extensive use of RCU in the Linux kernel has resulted in the
following rules of thumb, which may also apply to hazard pointers:

1. Procrastination works extremely well in read-mostly situations where
disagreement among readers is permissible. What constitutes "read-mostly"

depends on the workload, but 90 percent reads to 10 percent updates is a good
starting point.

2. Procrastination works reasonably well in read-mostly situations where readers
must agree.

3. Procrastination sometimes works well in cases where the numbers of reads and
updates are roughly equal and where readers must agree.

4. Procrastination rarely works well in update-mostly situations where readers must
agree. There are currently two known exceptions to this rule: (1) providing
existence guarantees for update-friendly mechanisms, and (2) providing
low-overhead wait-free read-side access for realtime use.

Note that the traditional definition of read may be generalized to include writes. An
example within Schrddinger's application would be if each animal's data structure
included an array of per-thread cache-aligned variables that count queries involving that
animal, thus measuring Schrodinger’s cat's popularity. This works because these
read-side writes do not conflict. Further generalization is not only possible, but also
heavily used in practice—for example, some Linux-kernel RCU read-side critical
sections contain conflicting writes that are protected by locking, with the lock contained
in the RCU-protected data structure [Arc03]. These use cases work because reference
counters, hazard pointers, and RCU all permit a wide variety of code in their read-side
critical sections, including atomic operations, memory barriers, time delays,
transactions, and lock operations.

Schrédinger's application requires only the traditional definition of read and is thus
covered by the first rule of thumb. This application is therefore eminently suitable for
synchronization via procrastination. These rules will continue to be refined with further
experience. In particular, better mechanisms are needed for update-heavy situations,
and there is some promising work in progress in this area, such as Transactional
Memory. Finally, the above table along with Table 1 in [McK13] might be a first step
toward rules of thumb for choosing between Reference Counting, hazard pointers and
RCU.

6.1 Procrastination Implementations
The following is a partial list of RCU and hazard-pointer implementations:
e Userspace RCU (liburcu) - C implementation of RCU and several RCU-protected data

structures, including linked lists and hash tables. Available in a number of Linux
distributions.

http://liburcu.org/

e Concurrent Building Blocks - C++ implementation of Hazard Pointer (called "SMR") and
other lock-free data structures. Also has Java interfaces.

e Concurrency Kit - C implementation of Hazard Pointer and lock-free data structures
Atomic Ptr Plus - C/C++ library that has a Hazard Pointer implementation.

e The parallelism shift and C++'s memory model - Contains C++ implementation for
Windows in appendices.
libcds - C++ library of lock-free containers and Hazard Pointer implementation
Predicate RCU: An RCU for Scalable Concurrent Updates - Contains an RCU
implementation optimized for moderate-sized systems. Includes logic allowing updates
to ignore irrelevant RCU read-side critical sections.

e Concurrent Memory Deallocation in the Objective-C Runtime - Describes an RCU-like
implementation that uses program-counter ranges to describe RCU read-side critical
sections.

e Scalable Read-mostly Synchronization Using Passive Reader-Writer Locks - Includes an
RCU-like implementation that is specialized for reader-writer locking.

e Speedy Transactions in Multicore In-memory Databases - In-memory database that uses
an RCU-like mechanism.

e Mindicators: A Scalable Approach to Quiescence - RCU-like mechanism specialized for
use within transactional memory implementations.

e Poor Man's RCU - Trivial RCU-like implementation that provides lock-free readers
despite being implemented using locking.

7. Conclusion and goals

This paper was written with the mind of helping the audience understand the tradeoffs between
the RCU proposal and Hazard Pointer proposal, how they compare with the current interfaces in
Shared Pointer and Atomic Shared Pointer and when is it better to be lazy and procrastinate.

All three form interesting tools in a Concurrency ToolKit for Lock-free programming that is
emerging in the C++ Standard. The result will make C++ more applicable in applications with
sensitivity towards real-time constraints and low-latency such as Games, Finance, Banking, and
image processing applications in VR/AR, automobile vision, or other simulation environment in
embedded processing.

8. References

[Arc03] Arcangeli, A., Cao, M., McKenney, P. E., Sarma, D. 2003. Using read-copy
update techniques for System V IPC in the Linux 2.5 kernel. In Proceedings of the 2003
Usenix Annual Technical Conference: 297-310.

http://amino-cbbs.sourceforge.net/
http://concurrencykit.org/
http://www.johantorp.com/
http://libcds.sourceforge.net/
http://doi.acm.org/10.1145/2858788.2688518
https://www.mikeash.com/pyblog/friday-qa-2015-05-29-concurrent-memory-deallocation-in-the-objective-c-runtime.html
http://blogs.usenix.org/conference/atc14/technical-sessions/presentation/liu
http://www.read.seas.harvard.edu/~kohler/pubs/tu13speedy.pdf
http://dx.doi.org/10.1109/ICDCS.2013.39
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf

[Hei27] W. Heisenberg. Uber den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift fur Physik, 43(3-4):172—-198, 1927. English
translation in “Quantum theory and measurement” by Wheeler and Zurek.

[McK13] Paul E. McKenney. Structured deferral: synchronization via procrastination.
Commun. ACM, 56(7):40—-49, July 2013.

[McK15] N4483, P. McKenney, Read-Copy-Update,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4483.pdf

[McK16] P0279R0, P. McKenney, RCU

[Mic16] P0233R0, M. Michael et al, Hazard Pointers, Safe Resource Reclamation for
Optimistic Concurrency

[Perf] P. McKenney, “Is Parallel Programming Hard, And, If So, What Can You Do
About It?”, http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

[Sch35] E. Schradinger. Die gegenwartige Situation in der Quantenmechanik.
Naturwissenschaften, 23:807-812; 823—-828; 844-949, November 1935. English
translation: http://www.tuhh.de/rzt/rzt/it/QM/cat.html.

[Sut15] H. Sutter, Atomic Smart Pointers,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4162.pdf

[Wiki16] Wikipedia. Cat anatomy. htips://en.wikipedia.org/wiki/Cat_anatomy.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4483.pdf
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.tuhh.de/rzt/rzt/it/QM/cat.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4162.pdf
https://en.wikipedia.org/wiki/Cat_anatomy

