
Document Number: P0277R1

Date: 2016-02-22

Audience: Evolution Working Group

Reply To: David Wilson

 davidwwilson@comcast.net

const Inheritance

Abstract

Proposal for const inheritance, a form of inheritance that provides a derived class read-only

access to its base class, and prevents modification of the base class instance via the derived

class interface.

The Problem

In at least one practical scenario, I have found it necessary to protect a base class from

modification by its derived classes. In this scenario, the base class t_format models a user-

specified report format, while the derived class t_report models a report in that format. A report

object supports many operations, such as adding data to itself, displaying itself to a screen, or

saving itself a file. None of its operations should change its user-specified format. This

translates to a requirement that a t_report object should never modify is base t_format object.

It would be useful to enforce this guarantee at compile time.

The existing public, protected and private forms of inheritance are of no help to protect the

base object. Under any of these forms of inheritance, the derived class is free to read and

modify public or protected members of its base class, or to call non-const methods of the base

class within its own non-const methods.

In the above example, one might argue that the proper relationship between t_report and

t_format is a has-a relationship, not an is-a relationship as implemented. This suggests the

solution of changing t_format from a base class to a const member of t_report. There are

practical issues with this solution:

 In the above example, the derived class bears a has-a relationship to its base class,

implemented using private inheritance, which is an acceptable implementation of this

relationship, conversion of the base class to a const member should not be necessary.

In other situations, the derived class may have an is-a relationship to its base class, in

which case converting the base class to a const member of the derived class is

inconsistent with the relationship. The const member solution is not a one-size-fits-all

solution.

 Changing a base class to a const member in an existing design can involve

considerable work. Constructors must change. Base class accesses within derived

classed methods must be changed to member accesses. Derived class interfaces

inherited from the base class must be explicitly implemented to access the member.

The Solution

In order to protect a base class from modification by a derived class, I propose a const

inheritance mechanism.

 const inheritance is specified by including the const keyword among the base class

specifiers (public, protected, private, virtual) in the derived class declaration.

 The effect of const inheritance on derived classes is as follows:

o Access to the base class instance within the derived class constructor is not affected.

Derived class constructors are free to invoke base class constructors and modify the

base class instance within the constructor.

o Derived class methods other than the constructor cannot modify the base class

instance by modifying non-mutable base class members or calling non-const base

class methods.

o External code cannot modify the base class instance through the derived class

interface. Inherited non-mutable base class members and non-const base class

methods are not accessible in the derived class interface.

Examples

class Foo
{
public:

 Foo(int value) : m_value(value), m_count(0) { }

 int get_value() const { return m_value; }
 int get_count() const { return m_count; }

 const int& value() const { return m_value; }
 int& value() { return m_value; }
 int& count() const { return m_count; }

 void set_value(int value) { m_value = value; }
 void set_count(int count) const { m_count = count; }

 int m_value;
 mutable int m_count;
};

// Bar cannot modify its Foo base class instance because of const inheritance
class Bar : public const Foo
{
public:

 Bar(int value) : Foo(value) { } // Good

 int get_value1() const { return m_value; } // Good
 int get_value2() const { return get_value(); } // Good

 int get_value3() const { return value(); } // Good

 int get_count1() const { return m_count; } // Good
 int get_count2() const { return get_count(); } // Good
 int get_count3() const { return count(); } // Good

 void set_value1(int value) { m_value = value; } // Bad
 void set_value2(int value) { set_value(value); } // Bad
 void set_value3(int value) { Foo::value() = value; } // Bad

 void set_count1(int count) const { m_count = count; } // Good
 void set_count2(int count) const { set_count(count); } // Good
 void set_count3(int count) const { Foo::count() = count; } // Good

 void do_stuff()
 {

Foo f;
f.set_value(42); // Good, modifies local instance, not base instance

}
};

// Auk cannot modify its Foo base class instance because Bar cannot
class Auk : public Bar
{
public:
 Auk(int value = 0) : Bar(value) { }
};

// Bat can modify its Foo base class instance
class Bat : public virtual Foo
{
public:
 Bat(int value = 0) : Foo(value) { }
};

// Cow cannot modify its Foo base class instance because of const inheritance
class Cow : public virtual const Foo
{
public:
 Cow(int value = 0) : Foo(value) { }
};

// Dog can modify its Foo base class instance through its Bat interface
class Dog : public Bat, public Cow
{
public:
 Dog(int value = 0) : Foo(value) { }
};

// Elk cannot modify its Foo base class instance because neither Bat nor Cow can
class Elk: public const Bat, public Cow
{
public:
 Elk(int value = 0) : Foo(value) { }
};

int main()
{
 // Foo can modify any of its members
 Foo foo(123); // Good
 int foo_value = foo.get_value(); // Good
 int foo_count = foo.get_count(); // Good
 foo_value = foo.value(); // Good
 foo_count = foo.count(); // Good
 foo.value() = foo_value; // Good
 foo.count() = foo_count; // Good
 foo.set_value(foo_value); // Good
 foo.set_count(foo_count); // Good
 foo.m_value = foo_value; // Good
 foo.m_count = foo_count; // Good

 // Bar cannot modify its Foo base class instance
 Bar bar(123); // Good
 int bar_value = bar.get_value(); // Good
 int bar_count = bar.get_count(); // Good
 bar_value = bar.value(); // Good
 bar_count = bar.count(); // Good
 bar.value() = bar_value; // Bad
 bar.count() = bar_count; // Good
 bar.set_value(bar_value); // Bad
 bar.set_count(bar_count); // Good
 bar.m_value = bar_value; // Bad
 bar.m_count = bar_count; // Good
}

