
Document number: P0320R0

Date: 2016-05-22

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group/Concurrency Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper presents an extension of thread construction allowing to pass some additional attributes,
like the stack size.

1. Introduction
2. Motivation and Scope
3. Proposal
4. Design Rationale
5. Proposed Wording
6. Implementability
7. Open points
8. Acknowledgements
9. References

This paper presents an extension of thread construction allowing to pass some additional attributes,
like the stack size.

Today we can construct an instance of thread with a function or callable object , e.g:

Thread Constructor Attributes

Table of Contents

Introduction

Motivation and Scope

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r0.md#references

void find_the_question(int the_answer);

std::thread deep_thought_2(find_the_question, 42);

Threads launched in this way are created with implementation defined thread attributes as stack size,
scheduling, priority, ... or any platform specific attributes.

However in some specific domains it is important to be able to be more specific so that the resources are
used in an optimal way.

As each platform has its own specific thread construction attributes, it is not evident how to provide a
portable interface that allows the user to set the platform specific attributes. This paper stay in the middle
road through the class std::thread::attributes which allows to set at least in a portable way the
stack size and provides some mechanisms to

This paper proposes then to

add a thread::attributes class with a single portable stack size attribute, and possible getter
of a native_handle_type ​ when available on the platform.
add thread constructors taking a thread::attributes parameter.

The stack size attribute of a thread can be set as follows:

std::thread::attributes attrs;
attrs.set_stack_size(4096*10);
std::thread deep_thought_2(attrs, find_the_question, 42);

Even for this simple attribute there could be portable issues as some platforms could require that the stack
size should have a minimal size and/or be a multiple of a given page size. The library implementation could
adapt the requested size to the platform constraints so that the user doesn't need to take care of it.

This is the single attribute that is provided in a portable way. In order to set any other thread attribute at
construction time the user needs to use non portable code.

On Posix platforms the user will need to get the thread attributes native handle and use it for whatever

Proposal

How to set the stack size?

Using a nativehandletype

attribute.

Next follows how the user could set the stack size and the scheduling policy on PThread platforms.

std::thread::attributes attrs;
// set portable attributes
// ...
attr.set_stack_size(4096*10);
#if defined(THREAD_PLATFORM_PTHREAD) // replace THREAD_PLATFORM_PTHREAD by any macro
 // ... pthread version
 pthread_attr_setschedpolicy(attr.native_handle(), SCHED_RR); // non portable
#endif
std::thread th(attrs, find_the_question, 42);

On Windows platforms it is not so simple as there is no type that compiles the thread attributes. There is
one attribute linked to the creation of a thread on Windows that is emulated via the
thread::attributes class, this is the LPSECURITY_ATTRIBUTES lpThreadAttributes . The

implementation can provide a non portable set_security function so that the user can provide it
before the thread creation as follows

std::thread::attributes attrs;
// set portable attributes
attr.set_stack_size(4096*10);
#if defined(THREAD_PLATFORM_WINDOWS) // replace THREAD_PLATFORM_WINDOWS by any macro
// set non portable attribute
LPSECURITY_ATTRIBUTES sec;
// init sec
attr.set_security(sec); // non portable
#endif
std::thread th(attrs, find_the_question, 42);
// Set other thread attributes using the native_handle_type.
//...

As the stack size is given as a hint, there is no portability issues. In platforms where the the stack size can

Extending the thread::attributes interface

Design rationale

Making the stack size really a portable attribute

not be set, this hint is just ignored, and the result of getting it would be the value '0', meaning the default
stack size.

As the Posix based platforms have associated a pthread_attribute_t to the thread creation, is
seems natural to provide a native handle accessor so that the user can in a non-portable way make use of
this handle. This is in line with the other native handle types.

Users of platforms as Windows that don't have a native handle for the thread attributes, could need to set
some attributes in a non-portable way. This paper let the implementation the possibility to add
implementation defined functions to achieve this goal.

The wording is relative to P0159R0.

Update Class thread [thread.thread.class] section with

Using setters versus constructors

About thread::attributes::native_handle

About thread::attributes non portable setters

Proposed wording

Thread library

Class thread [thread.thread.class]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

namespace std {
namespace experimental {
inline namespace concurrency_v3 {

 class thread {
 public:
 // add after id
 class attributes;

 // add after thread construtor
 template <class F, class ...Args>
 explicit thread(attributes cosnt& attr, F&& f, Args&&... args);

 };

}}}

namespace std {
namespace experimental {
inline namespace concurrency_v3 {

class thread::attributes {
public:
 attributes() noexcept;
 // stack
 void set_stack_size(std::size_t size) noexcept;
 std::size_t get_stack_size() const noexcept;

 typedef `implementation-defined` native_handle_type; // See 30.2.3
 native_handle_type native_handle() noexcept; // See 30.2.3

};

}}}

Implementations are free to add other functions not specified in this document.

attributes() noexcept;

Effects: Constructs a thread attributes instance with its default values. A thread constructed with such a
default attributes shall behave as if there was no attributes parameter.

Class thread::attributes

Postconditions: this-> get_stack_size() returns 0 .

Throws: Nothing

void set_stack_size(std::size_t size) noexcept;

Effects: Stores the stack size to be used to create a thread. This is a hint that the implementation can
choose a better size if to small or too big or not aligned to a page. 0 means the default.

Postconditions: this-> get_stack_size() returns the chosen stack size.

Throws: Nothing.

std::size_t get_stack_size() const noexcept;

Returns: The stack size to be used on the creation of a thread. Note that this function can return 0 meaning
the default. Throws: Nothing.

 native_handle_type native_handle() noexcept;

Returns: Returns an instance of native_handle_type that can be used with platform-specific APIs to
manipulate the underlying thread attributes implementation. If no such instance exists,
native_handle() and native_handle_type are not present.

Throws: Nothing.

Update thread constructors [thread.thread.constr] adding

template <class F, class ...Args> explicit thread(F&& f, Args&&... args);
template <class F, class ...Args> explicit thread(attributes const&, F&& f, Args&&... args

As before

Remarks: The first overload constructor shall not participate in overload resolution if decay_t<F> is the
same type as std::thread or std::thread::attributes .

Effects: Constructs an object of type thread , taking in account the passed attributes. The first overload
behaves as if a default attributes was passed.

Implementability

This proposal can be implemented as pure library extension, without any compiler magic support.
Boost.Thread provides it since version 1.51

The authors would like to have an answer to the following points if there is at all an interest in this proposal:

Do we want the stack size as portable attribute?

Do we want the thread::attributes::native_handle_type ?

Could an implementation provide additional functions in class thread::attributes ?

Should the default value for the stack size be implementation defined?

Thanks to all that commented this proposal helping me to improve globally the paper.

P0159R0 P0159 - Draft of Technical Specification for C++ Extensions for Concurrency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

Open points

Acknowledgements

References

http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html

