
Document number: P0327R0

Date: 2016-05-29

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Evolution Working Group / Reflection Working Group / Library
Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

This paper proposes a library mechanism for deconstructing types that parallels the language mechanism
described in Structured binding P0326R0. This proposal name them product types The interface includes getting
the number of elements, access to the nth element and the type of the nth element.

The main benefits of this are cheap reflection, allow automatic serialization support, automated interfaces, etc.

The wording depends on the wording of P0326R0.

In addition, some of the algorithms that work for tuple-like access are adapted to work with product types.

1. Introduction
2. Motivation
3. Proposal
4. Design Rationale
5. Wording
6. Implementability
7. Open points
8. Future work
9. Acknowledgements

10. References

Defining tuple-like access tuple_size , tuple_element and get<I>/get<T> for simple classes is --

Product types access

Abstract

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#future-work
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0327r0.md#references

as for comparison operators (N4475) -- tedious, repetitive, slightly error-prone, and easily automated.

P0144R2/P0217R1/P0326R0 proposes the ability to bind all the members of some type, at a time via the new
structured binding statement. This proposal names those types product types.

P0197R0 proposed the generation of the tuple-like access function for simple structs as the P0144R2 does for
simple structs (case 3).

We are unable to define a tuple-like access interface for C-arrays, as the get<I>(arr) cannot be found by
ADL.

This paper proposes a library interface to access the same types covered by Structured binding P0326R0,
product types. The interface includes getting the number of elements, access to the nth element and the type of
the nth element. This interface doesn't use ADL.

The wording of Structured binding has been modified so that both structured binding and the possible product
type access wording isn't repetitive.

Besides std::pair , std::tuple and std::array , aggregates in particular are good candidates to
be considered as tuple-like types. However defining the tuple-like access functions is tedious, repetitive, slightly
error-prone, and easily automated.

Some libraries, in particular Boost.Fusion and Boost.Hana provide some macros to generate the needed
reflection instantiations. Once this reflection is available for a type, the user can use the struct in algorithms
working with heterogeneous sequences. Very often, when macros are used for something, it is hiding a
language feature.

Algorithms such as std::tuple_cat and std::experimental::apply that work well with tuple-like
types, should work also for product types. There are many more of them; a lot of the homogeneous container
algorithm are applicable to heterogeneous containers and functions, see Boost.Fusion and Boost.Hana. Some
examples of such algorithms are fold , accumulate , for_each any_of , all_of , none_of ,
find , count , filter , transform , replace , join , zip , flatten .

P0144R2/P0217R1/P0326R0 proposes the ability to bind all the members of a tuple-like type at a time via the
new structured binding statement. P0197R0 proposes the generation of the tuple-like access function for simple
structs as the P0144R2 does for simple structs (case 3 in P0144R2).

The wording in P0217R1/P0326R0, allows to do structure binding for C-arrays and allow bitfields as members in
case 3 (built-in). But

bitfields cannot be managed by the current tuple-like access function get<I>(t) without returning a

Motivation

Status-quo

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf

bitfields reference wrapper, so P0197R0 doesn't provides a tuple-like access for all the types supported by
P0217R1.

we are unable to find a get<I>(arr) overload on C-arrays using ADL.

This is unfortunately asymmetric. We want to have structure binding, pattern matching and product types access
for the same types.

This means that the extended tuple-like access cannot be limited to tuple-like access.

To provide extended tuple-like access for all the types covered by P0144R2 which support getting the size and
the nth element, we would need to define some kind of predefined operators
pt_size(T) / pt_get(N, pt) that could use the new product type customization points. The use of

operators, as opposed to pure library functions, is particularly required to support bitfield members.

The authors don't know how to define a function interface that could manage with bitfield references. See
P0326R0 "Ability to work with bitfields only partially" for a description of the customization issues.

We shouldn't forget parameter packs, which could be seen as being similar to product types. Parameter packs
already have the sizeof...(T) operator. Some (see e.g. P0311R0 and references therein) are proposing
to have a way to explicitly access the nth element of a pack (a variety of possible syntaxes have been
suggested). The authors believe that the same operators should apply to parameter packs and product types.

Taking into consideration these points, this paper proposes a product type access library interface.

We don't propose yet the product type operators to get the size and the nth element as we don't have a good
proposal for the operators's name. We prefer to wait until we have some concrete proposal for parameter packs
direct access.

The product type access could be based on two operators: one pt_size(T) to get the size and the other
pt_get(N, pt) to get the N th element of a product type instance pt of type T . The definition of

these operators would be based on the wording of structured binding P0217R1.

The name of the operators pt_size and pt_get are of course subject to bike-shedding.

But what would be the result type of those operators? While we can consider pt_size as a function and we
could say that it returns an unsigned int , pt_get(N,pt) wouldn't be a function (if we want to support

bitfields), and so decltype(pt_get(N,pt)) wouldn't be defined if the Nth element is a bitfield managed on

Ability to work with bitfields

Parameter packs

Proposal

Future Product type operator proposal (Not yet)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

bitfields), and so decltype(pt_get(N,pt)) wouldn't be defined if the Nth element is a bitfield managed on
P0144R2 case 3. In all the other cases we can define it depending on the const-rvalue nature of pt .

The following could be syntactic sugar for those operators but we don't propose them yet. We wait to see what
we do with parameter packs direct access and sum types.

pt_size(PT) = sizeof...(PT)

pt_get(N, pt) = pt.[N]

1. pt_size(T) , pt_size(T) and pt_get(N, pt) aren't functions, and so they cannot be used in
any algorithm expecting a function. Generic algorithms working on product types should take the type as a
template parameter and possibly an integral constant for the indices.

2. We need to find the name for those two operators.

An alternative is to define generic functions std::product_type::size<PT>() and
std::product_type::get<I>(pt) using wording similar to that in P0217R1.

The interface tries to follows in someway the guidelines presented in N4381.

We have two possibilities for std::product_type::get : either it supports bitfield elements and we need a
std::bitfield_ref type, or it doesn't supports them.

We believe that we should provide a bitfield_ref class in the future, but this is out of the scope of this
paper.

However, we can already define the functions that will work well with all the product types expect for bitfields.

namespace std {
namespace product_type {

 template <class PT>
 struct size;

 // Wouldn't work for bitfields
 template <size_t N, class PT>
 constexpr auto get(PT&& pt)

 template <size_t N, class PT>
 struct element;

}}

Caveats

Product type library proposal

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html

While this could be seen as a limitation, and it would be in some cases, we can already start to define a lot of
algorithms.

Users could already define their own bitfield_ref class and define its customization point for bitfields
members if needed.

Adapt the definition of std::tuple_cat in [tuple.creation] to take care of product type

Similar to the constructor from pair .

This simplifies a lot the std::tuple interface (See N4387).

Adapt the definition of std::apply in [xxx] to take care of product type

NOTE: This algorithm could be moved to a product type specific algorithms file.

The following constructor could also be generalized to product types

template <class... Args1, class... Args2>
 pair(piecewise_construct_t,
 tuple<Args1...> first_args, tuple<Args2...> second_args);

template <class PT1, class PT2>
 pair(piecewise_construct_t, PT1 first_args, PT2 second_args);

Similar to the tuple constructor from pair .

This simplifies a lot the std::pair interface (See N4387).

Algorithms and function adaptation

std::tuple_cat

Constructor from a product type with the same number of elements as the tuple

std::apply

std::pair

piecewise constructor

Constructor and assignment from a product type with two elements

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html

We will be unable to define algorithms working on the same kind of types supported by Structured binding
P0326R0.

While Structured binding is a good tool for the user, it is not adapted to the library authors, as we need to know
the number of elements of a product type to do Structured binding.

This means that the user would continue to write generic algorithms based on the tuple-like access and we
cannot have a tuple-like access for c-arrays and for the types covered by Structured binding case 3 P0326R0.

Should the product type size access be a constexpr function or a trait?

The name of product type interface, size , get , element , are quite common. Nesting them on a
specific namespace makes the intent explicit.

We can also preface them with product_type_ , but the role of namespaces was to be able to avoid this
kind of prefixes.

We can also place the interface nested on a struct. Using a namespace has the advantage that we can use
using directives and using declarations.

Using a struct would make the interface closed to adding new nested functions, but it would be open by
derivation.

Add the following section

Design Rationale

What do we loss if we don't add this product type access in
C++17?

Traits versus functions

Locating the interface on a specific namespace

Namespace versus struct

Wording

Product types terms

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf

A type E is a product type if the following terms are well defined. Let e be a lvalue of type E

product type size of E

If E is an array type with element type T , then is equal to the number of elements of E .
Else, the unqualified-id product_type_size is looked up in the scope of E by class member access
lookup (3.4.5 [basic.lookup.classref]), and if that finds at least one declaration, then is
e.product_type_size() . Otherwise, then is product_type_size(e) , where
product_type_size is looked up in the associated namespaces (3.4.2 [basic.lookup.argdep]). [Note:

Ordinary unqualified lookup (3.4.1 [basic.lookup.unqual]) is not performed. -- end note].
Else, if all of E 's non-static data members and bit-fields shall be public direct members of E or of the
same unambiguous public base class of E , E shall not have an anonymous union member, equal to
the number of non-static data members of E .
Else it is undefined.

product type i th-element of E

If the product type size of E is defined and i is less than the product type size of E.

If E is an array type with element type T , equal to e[i] .
Else, if the expression e.product_type_size() is a well-formed integral constant expression,
equal to the following: The unqualified-id product_type_get is looked up in the scope of E by
class member access lookup (3.4.5 [basic.lookup.classref]), and if that finds at least one declaration,
the value is e.product_type_get<i-1>() . Otherwise, the value is
product_type_get<i-1>(e) , where product_type_get is looked up in the associated

namespaces (3.4.2 [basic.lookup.argdep]). [Note: Ordinary unqualified lookup (3.4.1
[basic.lookup.unqual]) is not performed. -- end note].
Else, if all of E 's non-static data members and bit-fields shall be public direct members of E or of
the same unambiguous public base class of E , E shall not have an anonymous union member,
equal to e.mi where i -th non-static data member of E in declaration order is designated by
mi .

Else it is undefined.

Else it is undefined.

product type i th-element type of E

If the product type size of E is defined and i is less than the product type size of E.

If E is an array type with element type T , equal to T .
Else If the expression E::product_type_element_type<i-1>::type is a well-formed integral
constant expression, equal to E::element_type<i-1>::type .
Else, the unqualified-id product_type_element_type is looked up in the scope of E by class
member access lookup (3.4.5 [basic.lookup.classref]), and if that finds at least one declaration, the
type is
decay_t<decltype(e.product_type_element_type(integral_constant<size_t, i>{}))> .

Else, the unqualified-id product_type_element_type is looked up in the associated
namespaces (3.4.2 [basic.lookup.argdep]). [Note: Ordinary unqualified lookup (3.4.1
[basic.lookup.unqual]) is not performed. -- end note], and if that finds at least one declaration, the type
is
decay_t<decltype(product_type_element_type(integral_constant<size_t, i>{}, e)>

Else if the product type i th-element of e is defined the type is decay_t< product type i th-element of
e > .
Else, if all of E 's non-static data members and bit-fields shall be public direct members of E or of
the same unambiguous public base class of E , E shall not have an anonymous union member,
equal to decay_t<decltype(e.mi)> where i -th non-static data member of E in declaration
order is designated by mi .
Else it is undefined.

Else it is undefined.

If any of the previous terms is not defined the other are not defined.

Update the Structured binding wording to make use of the previous terms

In 7.1.6.4 [dcl.spec.auto] paragraph 8 of the Structured Binding proposal

Replace

If E is an array,

bit-field if that member is a bit-field.

by

If the product type size of E is defined and product type i th-element is defined for all i in 0..product type
size then

then number of elements in the identifier-list shall be equal to product type size of e .
each vi is the name of an lvalue that refers to the product type i-1 th-element and whose type is product
type i-1 th-element type.

Add a new <product_type> file in 17.6.1.2 Headers [headers] Table 14

Add the following section

Product type object

Product type synopsis

namespace std {
namespace product_type {

 template <class PT>
 struct size;

 template <size_t N, class PT>
 constexpr auto get(PT&& pt);

 template <size_t I, class PT>
 struct element;

}}

template <class PT>
struct size : integral_constant<size_t, `see below`> {};

Remark: if product type size PT is defined, the value of the integral constant is product type size PT else
the trait is undefined.

Note: In order to implement this trait library it would be required that the compiler provides some builtin as e.g.
__builtin_pt_size(PT) that implements product type size PT .

template <class PT>
struct element {
 using type = `see below`
};

Remark: if product type Nth-element type of PT is defined the nested alias type is product type Nth-element
type of PT.Else it is undefined.

Note: In order to implement this trait library it would be required that the compiler provides some builtin as e.g.
__builtin_pt_element_type(N, PT) that implements product type element type N , PT .

template <size_t N, class PT>
constexpr auto get(PT && pt);

Requires: N < size<PT>()

Template Class product_type::size

Template Class product_type::element

Template Function product_type::get

Returns: the *product type N th-element* of pt .

Remark: This operation would not be defined if product type Nth-element of pt is undefined.

Note: In order to implement this function library it would be required that the compiler provides some builtin as
e.g. __builtin_pt_get(N, pt) that implements product type Nth-element of pt .

Change 20.4.1p1 [tuple.general], Header synopsis as indicated.

Replace

template <class... Tuples>
constexpr tuple<CTypes...> tuple_cat(Tuples&&... tpls);

by

template <class... PTs>
constexpr tuple<CTypes...> tuple_cat(PTs&&... pts);

Change 20.4.2 [tuple.tuple], class template tuple synopsis, as indicated.

Replace

 // 20.4.2.1, tuple construction
 ...
 template <class... UTypes>
 EXPLICIT constexpr tuple(const tuple<UTypes...>&);
 template <class... UTypes>
 EXPLICIT constexpr tuple(tuple<UTypes...>&&);

 template <class U1, class U2>
 EXPLICIT constexpr tuple(const pair<U1, U2>&); // only if sizeof...(Types) == 2
 template <class U1, class U2>
 EXPLICIT constexpr tuple(pair<U1, U2>&&); // only if sizeof...(Types) == 2

 // 20.4.2.2, tuple assignment
 ...
 template <class... UTypes>
 tuple& operator=(const tuple<UTypes...>&);
 template <class... UTypes>
 tuple& operator=(tuple<UTypes...>&&);
 template <class U1, class U2>
 tuple& operator=(const pair<U1, U2>&); // only if sizeof...(Types) == 2
 template <class U1, class U2>
 tuple& operator=(pair<U1, U2>&&); // only if sizeof...(Types) == 2

 // allocator-extended constructors
 ...
 template <class Alloc, class... UTypes>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
 template <class Alloc, class... UTypes>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
 template <class Alloc, class U1, class U2>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
 template <class Alloc, class U1, class U2>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

by

 // 20.4.2.1, tuple construction
 ...
 template <class PT>
 EXPLICIT constexpr tuple(PT&&);

 // 20.4.2.2, tuple assignment
 ...
 template <class PT>
 tuple& operator=(PT&& u);

 // allocator-extended constructors
 ...
 template <class Alloc, class PT>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, PT&&);

Suppress in 20.4.2.1p3, Assignment

, and Ui be the i th type in a template parameter pack named UTypes , where indexing is zero-
based

Replace 20.4.2.1p15-26, Construction by

template <class PT>
 EXPLICIT constexpr tuple(PT&& u);

Let Ui is product_type::element<i, decay_t<PT>>::type .

Effects: For all i , the constructor initializes the i th element of *this with
std::forward<Ui>(product_type::get<i>(u)) .

Remarks: This constructor shall not participate in overload resolution unless PT is a product type with the
same number elements than this tuple and is_constructible<Ti, Ui&&>::value is true for all i .
The constructor is explicit if and only if is_convertible<Ui&&, Ti>::value is false for at least one i .

Suppress in 20.4.2.2p1, Assignment

and Ui be the i th type in a template parameter pack named UTypes , where indexing is zero-
based

Replace 20.4.2.2p9-20, Assignment by

Constructor from a product type

Assignment from a product type

template <class PT>
 tuple& operator=(PT&& u);

Let Ui is product_type::element<i, decay_t<PT>>::type .

Effects: For all i , assigns std::forward<Ui>(product_type::get<i>(u)) to
product_type::get<i>(*this)

Returns: *this

Remarks: This function shall not participate in overload resolution unless PT is a product type with the same
number elements than this tuple and is_assignable<Ti&, const Ui&>::value is true for all i .

Change the signatueres

template <class Alloc>
 tuple(allocator_arg_t, const Alloc& a, const tuple&);
template <class Alloc>
 tuple(allocator_arg_t, const Alloc& a, tuple&&);
template <class Alloc, class... UTypes>
EXPLICIT tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
template <class Alloc, class... UTypes>
EXPLICIT tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template <class Alloc, class U1, class U2>
EXPLICIT tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
template <class Alloc, class U1, class U2>
EXPLICIT tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

by

 template <class Alloc, class PT>
 EXPLICIT tuple(allocator_arg_t, const Alloc& a, PT&&);

Adapt the definition of std::tuple_cat in [tuple.creation] to take care of product type

Replace Tuples by PTs , tpls by pts , tuple by product type , get by
product_type::get and tuple_size by product_type::size .

Allocator-extended constructors from a product type

std::tuple_cat

template <class... PTs>
constexpr tuple<CTypes...> tuple_cat(PTs&&... pts);

Adapt the definition of std::apply in [xxx] to take care of product type

Replace Tuple by PT , t by pt , tuple by product type , std::get by
product_type::get and std::tuple_size by product_type::size .

template <class F, class PT>
constexpr decltype(auto) apply(F&& f, PT&& t);

Change 20.3.2 [pairs.pair], class template pair synopsis, as indicated:

Replace

template <class... Args1, class... Args2>
 pair(piecewise_construct_t,
 tuple<Args1...> first_args, tuple<Args2...> second_args);

by

template <class PT1, class PT2>
 pair(piecewise_construct_t, PT1 first_args, PT2 second_args);

Add
```c++
template EXPLICIT constexpr pair(PT&& u); ... template tuple& operator=(PT&& u);

} ```

Replace

template <class... Args1, class... Args2>
    pair(piecewise_construct_t,
        tuple<Args1...> first_args, tuple<Args2...> second_args);

std::apply

std::pair

piecewise constructor



by

template <class PT1, class PT2>
    pair(piecewise_construct_t, PT1 first_args, PT2 second_args);

Add

template <class PT> E
  EXPLICIT constexpr pair(PT&& u); 

Let where Ui  is product_type::element<i, decay_t<PT>>::type .

Effects: For all i , the constructor initializes the i th element of *this  with
`std::forward(product_type::get(u)).

Remarks: This function shall not participate in overload resolution unless PT  is a product type with 2 elements
and is_constructible<Ti, Ui&&>::value  is true for all i  The constructor is explicit if and only if
is_convertible<Ui&&, Ti>::value  is false for at least one i .

template <class PT>
  pair& operator=(PT&& u);

Let Ui  is product_type::element<i, decay_t<PT>>::type .

Effects: For all i  in 0..1, assigns std::forward<Ui>(product_type::get<i>(u))  to
product_type::get<i>(*this)

Returns: *this

Remarks: This function shall not participate in overload resolution unless PT  is a product type with 2 elements
and is_assignable<Ti&, const Ui&>::value  is true for all i .

This is not just a library proposal as the behavior depends on Structured binding P0326R0. There is no
implementation as of the date of the whole proposal paper, however there is an implementation for the part that
doesn't depend on the core language PT_impl emulating the cases 1 and 2.

Constructor from a product type

Assignment from a product type

Implementability

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
https://github.com/viboes/std-make/blob/master/doc/proposal/reflection/product_type.cpp


The authors would like to have an answer to the following points if there is any interest at all in this proposal:

Do we want the std::product_type::size / std::product_type::get  functions?
Do we want the std::product_type::size / std::product_type::element  traits?
Do we want to adapt std::tuple_cat

Do we want to adapt std::apply

Do we want the new constructors for std::pair  and std::tuple

Do we want the pt_size / pt_get  operators in a future proposal?

for_each : PT(T) x (T->void) -> void

front: PT(T) -> T

back: PT(T) -> T

is_empty : PT(T) -> bool

lexicographical_compare: PT(T) x PT(T) x (T×T!Bool) -> bool

The following algorithms needs a make<TC>(args...)  factory P0338R0.

If the first product type argument is TypeConstructible from the CTypes  then return an instance of it, else

Open Questions

Future work

Add bitfield_ref  class and allow product type function
access for bitfield members

Add other algorithms on Product Types

for_each

front

back

is_empty

lexicographical_compare

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf


construct a std::tuple .

cat: TCPT(T)... -> TCPT(T)

drop_front: TCPT(T) -> TCPT(T)

drop_back: TCPT(T) -> TCPT(T)

TCPT(T) -> TCPT(TCPT(T))

insert: TCPT(T) x unsigned x T -> TCPT(T)

transform: TCPT(T) x F -> TCPT(T)

Thanks to Jens Maurer, Matthew Woehlke and Tony Van Eerd for their comments in private discussion about
structured binding and product types.

Thanks to all those that have commented the idea of a tuple-like generation on the std-proposals ML better
helping to identify the constraints, in particular to J. "Nicol Bolas" McKesson, Matthew Woehlke and Tim "T.C."
Song.

Thanks to David Sankel for revising the last version.

Boost.Fusion Boost.Fusion 2.2 library

http://www.boost.org/doc/libs/1600/libs/fusion/doc/html/index.html

cat

drop_front

drop_back

group

insert

transform

...

Acknowledgments

References

http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html


Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

N4381 Suggested Design for Customization Points

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html

N4387 Improving pair and tuple, revision 3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html

N4475 Default comparisons (R2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

N4527 Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

N4532 Proposed wording for default comparisons

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html

P0017R1 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

P0091R1 Template argument deduction for class templates (Rev. 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r1.html

P0095R1 Pattern Matching and Language Variants

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0095r1.pdf

P0144R2 Structured Bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf

P0197R0 Default Tuple-like Access

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf

P0217R1 Proposed wording for structured bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

P0311R0 A Unified Vision for Manipulating Tuple-like Objects

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html

http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0095r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html


P0326R0 Structured binding: alternative design for customization points

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf

P0338R0 C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

PT_impl Product types

https://github.com/viboes/std-make/blob/master/doc/proposal/reflection/product_type.cpp

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
https://github.com/viboes/std-make/blob/master/doc/proposal/reflection/product_type.cpp

