
Document number: P0327R3

Date: 2017-10-15

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

This paper proposes a library mechanism for deconstructing types that parallels the language mechanism
described in Structured binding P0144R2. This proposal name a type concerned by structured binding a
ProductType. The interface includes getting the number of elements, access to the nth element and the type
of the nth element.

The main benefits of this are cheap reflection, allow automatic serialization support, automated interfaces,
etc.

Introduction
Motivation
Proposal
Design Rationale
Proposed Wording
Implementability
Open points
Future work
Acknowledgements
History
References

Product-Type access (Revision 3)

Abstract

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#future-work
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#history
file:///Users/viboes/github/std_make/doc/proposal/product_type/p0327r3.md#references

Defining tuple-like access tuple_size , tuple_element and get<I>/get<T> for simple
classes is -- as for comparison operators (N4475) -- tedious, repetitive, slightly error-prone, and easily
automated.

P0144R2/P0217R3 proposes the ability to bind all the members of some type, at a time via the new
structured binding statement. This proposal names those types product types.

P0197R0 proposed the generation of the tuple-like access function for simple structs as the P0144R2 does
for simple structs (case 3).

This paper proposes a library interface to access the same types covered by Structured binding P0144R2,
product types. The interface includes getting the number of elements, access to the nth element and the
type of the nth element. This interface doesn't use ADL.

Besides std::pair , std::tuple and std::array , aggregates in particular are good
candidates to be considered as tuple-like types. However defining the tuple-like access functions is tedious,
repetitive, slightly error-prone, and easily automated.

Some libraries, in particular Boost.Fusion and Boost.Hana provide some macros to generate the needed
reflection instantiations. Once this reflection is available for a type, the user can use the struct in algorithms
working with heterogeneous sequences. Very often, when macros are used for something, it is hiding a
language feature.

P0144R2/P0217R3 proposes the ability to bind all the members of a tuple-like type at a time via the new
structured binding statement. P0197R0 proposes the generation of the tuple-like access function for simple
structs as the P0144R2 does for simple structs (case 3 in P0144R2).

The wording in P0217R3, allows to do structure binding for C-arrays and allow bitfields as members in case
3 (built-in). But

bitfields cannot be managed by the current tuple-like access function get<I>(t) without returning
a bitfields reference wrapper, so P0197R0 doesn't provides a tuple-like access for all the types
supported by P0217R3.

we are unable to find a get<I>(arr) overload on C-arrays using ADL.

This is unfortunately asymmetric. We want to have structure binding, pattern matching and product types
access for the same types.

This means that the extended tuple-like access cannot be limited to tuple-like access.

Motivation

Status-quo

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html

Algorithms such as std::tuple_cat and std::experimental::apply that work well with tuple-
like types, should work also for product types. There are many more of them; a lot of the homogeneous
container algorithm are applicable to heterogeneous containers and functions, see Boost.Fusion and
Boost.Hana. Some examples of such algorithms are swap , lexicographical_compare ,
for_each , filter , find , fold , any_of , all_of , none_of , accumulate ,
count , ...

Other algorithms that need in addition that the ProductType to be also TypeConstructible are e.g.
transform , replace , join , zip , flatten , ...

To provide extended tuple-like access for all the types covered by P0144R2 which support getting the size
and the nth element, we would need to define some kind of predefined operators
pt_size(T) / pt_get(N, pt) that could use the new product type customization points. The use of

operators, as opposed to pure library functions, is particularly required to support bitfield members.

The authors don't know how to define a function interface that could manage with bitfield references. See
P0326R0 "Ability to work with bitfields only partially" for a description of the customization issues.

We shouldn't forget parameter packs, which could be seen as being similar to product types. Parameter
packs already have the sizeof...(T) operator. Some (see e.g. P0311R0 and references therein) are
proposing to have a way to explicitly access the nth element of a pack (a variety of possible syntaxes have
been suggested). The authors believe that the same operators should apply to parameter packs and
product types.

Taking into consideration these points, this paper proposes a product type access library interface. See
P0648R0 and P0649R0 for specific ProdutTypes algorithms and how the standard library can by
generalizing tuple-likke type to productType types.

We don't propose yet the product type operators to get the size and the nth element as we don't have a
good proposal for the operators's name. We prefer to wait until we have some concrete proposal for
parameter packs direct access.

The product type access could be based on two operators: one pt_size(T) to get the size and the

other pt_get(N, pt) to get the N th element of a product type instance pt of type T . The

Ability to work with bitfields

Parameter packs

Proposal

Future Product type operator proposal (Not yet)

http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0649r0.html

other pt_get(N, pt) to get the N th element of a product type instance pt of type T . The
definition of these operators would be based on the wording of structured binding P0217R3.

The name of the operators pt_size and pt_get are of course subject to bike-shedding.

But what would be the result type of those operators? While we can consider pt_size as a function and
we could say that it returns an unsigned int , pt_get(N,pt) wouldn't be a function (if we want to
support bitfields), and so decltype(pt_get(N,pt)) wouldn't be defined if the Nth element is a bitfield
managed on P0144R2 case 3. In all the other cases we can define it depending on the const-rvalue nature
of pt .

The following could be syntactic sugar for those operators but we don't propose them yet. We wait to see
what we do with parameter packs direct access and sum types.

pt_size(PT) = sizeof...(PT)

pt_get(N, pt) = pt.[N]

1. pt_size(T) , pt_element(T) and pt_get(N, pt) aren't functions nor traits, and so they
cannot be used in any algorithm expecting a function or a traits as parameter.

2. We need to find the name for those operators.

An alternative is to define generic function std::product_type::get<I>(pt) and traits
std::product_type::size<PT>::value std::product_type::element_t<PT> using

wording similar to that in P0217R3.

The interface tries to follow in someway the guidelines presented in N4381.

We have two possibilities for std::product_type::get : either it supports bitfield elements and we
need a std::bitfield_ref type, or it doesn't supports them.

We believe that we should provide a bitfield_ref class in the future, but this is out of the scope of
this paper.

However, we can already define the functions that will work well with all the product types expect for
bitfields.

Caveats

Product type access library proposal

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html

namespace std {
namespace product_type {

 template <class PT>
 struct size;

 // Wouldn't work for bitfields
 template <size_t N, class PT>
 constexpr auto get(PT&& pt)

 template <size_t N, class PT>
 struct element;

}}

While this could be seen as a limitation, and it would be in some cases, we can already start to define a lot
of algorithms.

Users could already define their own bitfield_ref class and define its customization point for bitfields
members if needed when structured binding will be updated to allow bitfield customization.

Waiting for that, the user will need to wrap the bitfields in a specific structure and do bit manipulation
outside independently of the product type access.

We will be unable to define algorithms working on the same kind of types supported by Structured binding
P0144R2.

While Structured binding is a good tool for the user, it is not adapted to the library authors, as we need to
know the number of elements of a product type to do Structured binding.

This means that the user would continue to write generic algorithms based on the tuple-like access and we
don't have a tuple-like access for c-arrays (which could be added) and for the types covered by Structured
binding case 3 P0217R3.

Design Rationale

What do we loss if we don't add this product type access?

Can the ProductType interface be implemented using
Reflection

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
file:///Users/viboes/github/std_make/doc/proposal/product_type/which%20could%20be%20added%20only%20with%20compiler%20help,%20as%20this%20paper%20proposes

Even if we can generate the implementation for some of the types Reflection, we are unable to generate the
whole interface (or at least the authors don't know how todo it).

Reflection can help for arrays (case 1) and structs (case 3). However, the case 2 is more subtle. How
Reflection could help to "lookup in the associated namespaces (3.4.2)"? Would this mean that the reflection
interface would provide the different kind of lookup.

Should the product type size access be a constexpr function or a trait?

We have chosen a traits to be inline with tuple-like access. Note that the trait defines the function call

 auto s = product_type::size<PT>{}();

Note also that having a function to get the element type is not natural and its use is not friendly.

The name of product type interface, size , get , element , are quite common. Nesting them on a
specific namespace makes the intent explicit.

We can also preface them with product_type_ , but the role of namespaces was to be able to avoid
this kind of prefixes.

We can also place the interface nested on a struct. Using a namespace has the advantage is open for
addition. It can also be used with using directives and using declarations.

Using a struct would make the interface closed to adding new nested functions, but it would be open
by derivation.

What we surely need is an explicit namespace that is open for additions and that request explicit
qualification. N1691 "Explicit Namespaces" suggest something like that, but goes too far.

This paper has the same customization point for product types that the structured binding supporting types.

In Toronto it was suggested that we should have a more specific way to customize the product types.

Traits versus functions

Locating the interface on a specific namespace

Namespace versus struct

Should we add a more specific customization point

https://gist.github.com/jacquelinekay/6bcacee7a3bce7d82b9d6387b6afee96
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1691.html

This paper doesn't proposes yet a specific customization point as it will invalidate the purpose to map
product types and structured binding supporting types. If the LEWG believes this is a good idea we will
need to adapt the structured binding wording.

Anyway, let me present now how we could have a customization point more specific and how it would
manage with the current tuple-like customization point in a backward compatible way. This design is the
one adopted by the library emulation in PT_impl.

Following [CUSTOM] Traits: An Alternative Design for Customization Points, we will define in namespce
product_type a traits class.

namespace product_type
{

template <class PT, class Enabler = void>
struct traits;

// Default failing specialization
template <class PT, bool condition>
struct traits<PT, meta::when<condition>>
{
 template <class T>
 static constexpr auto get(T &&x) = delete;
};

// Forward to customized class using tuple-like access
template <class PT>
struct traits<PT, meta::when<has_tuple_like_access<PT>::value>>
{
 using size = tuple_size<PT>;

 template <size_t I>
 using element = tuple_element<I, PT>;

 template <size_t I, class PT2,
 class = std::enable_if_t<I<size::value>> static constexpr decltype(
 auto) get(PT2 &&pt) noexcept
 {
 return product_type_detail::get_adl::xget<I>(forward<PT2>(pt));
 }
};

template <class T, size_t N>
struct traits<T[N]>
{
 using size = integral_constant<size_t, N>;
 template <size_t I>

https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type

 struct element
 {
 using type = T;
 };

 template <size_t I, class U, size_t M,
 class = std::enable_if_t<I<N>> static constexpr U &get(
 U (&arr)[M]) noexcept
 {
 return arr[I];
 }
};

}

Where has_tuple_like_access<PT>::value states if the type PT is a tuple-like type.

The wording of structured binding should be adapted but the author suspect that a breaking change will be
introduced respect to the way get is found.

The proposed changes are expressed as edits to N5131 Working Draft, Standard for Programming
Language C++.

Note that the wording for the structured binding has not been changed even it could profit from the definition
of the"Product types terms". This will in some sense have a duplicated wording, but the authors expect that
this can be solved later on.

Add the following section

If E is an array type with element type T ,

the product type size of E is equal to the number of elements of E,
the product type i th-element of E is e[i-1] ,
the product type i th-element type of E is T .

[Note: The top-level cv-qualifiers of T are cv. — end note]

Otherwise, if the expression std::tuple_size<E>::value is a well-formed integral constant
expression,

Proposed Wording

Product types terms

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n5131.pdf

the product type size of E is equal to std::tuple_size<E>::value ,

If the expression std::tuple_element<E>::type is a well-formed type

the product type i th-element type of E is this type.

The unqualified-id get is looked up in the scope of E by class member access lookup (3.4.5), and if
that finds at least one declaration, the initializer is e.get<i - 1>() . Otherwise, the initializer is
get<i - 1>(e) , where get is looked up in the associated namespaces (3.4.2). In either case,
get<i - 1> is interpreted as a template-id. [Note: Ordinary unqualified lookup (3.4.1) is not performed.

— end note]

the product type i th-element of E is this initializer

Otherwise, all of E ’s non-static data members shall be public direct members of E or of the same
unambiguous public base class of E , E shall not have an anonymous union member. The i th non-
static data member of E in declaration order is designated by mi .

the product type size of E is equal to the number of non-static data members of E.
the product type i th-element of E is this e.mi ,
the product type i th-element type of E is the declared type of that E::mi .

Otherwise the terms are undefined.

If any of the previous terms is not defined the others are not defined.

Add a new <product_type> file in 17.6.1.2 Headers [headers] Table 14

**Add the following section in N4617 **

Product type object

Product type synopsis

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

namespace std {
 template <class PT>
 struct is_product_type;
 template <class T>
 constexpr bool is_product_type_v = is_product_type<T>::value;
namespace product_type {

 template <class PT>
 struct size;

 template <size_t N, class PT>
 constexpr auto get(PT&& pt);

 template <size_t N, class PT>
 struct element;

}}

This trait is true_type if the type T is a product type.

template <class PT>
struct size : integral_constant<size_t, `see below`> {};

Remark: if product type size PT is defined, the value of the integral constant is product type size PT .
Otherwise the trait is undefined.

Note: In order to implement this trait library it would be required that the compiler provides some builtin as
e.g. __builtin_pt_size(PT) that implements product type size PT .

template <size_t N, class PT>
struct element {
 using type = `see below`
};

Remark: if 0 <= N and N < product_type::size<PT>::value and product type Nth-element
type of PT is defined the nested alias type is product type Nth-element type of PT. Otherwise it is
undefined.

Template Class is_product_type

Template Class product_type::size

Template Class product_type::element

Note: In order to implement this trait library it would be required that the compiler provides some builtin as
e.g. __builtin_pt_element_type(N, PT) that implements product type element type N , PT .

template <size_t N, class PT>
constexpr auto get(PT && pt);

Returns: the *product type N th-element* of pt .

Remark: This operation would not be defined if 0 > N and
N >= product_type::size<PT>::value or product type Nth-element of pt is undefined.

Note: In order to implement this function library it would be required that the compiler provides some builtin
as e.g. __builtin_pt_get(N, pt) that implements product type Nth-element of pt .

This is not just a library proposal as the behavior depends on Structured binding P0217R3. There is no
implementation as of the date of the whole proposal paper, however there is a non conforming
implementation PT_impl for the parts that don't depend on the core language emulating the cases 1 and 2.
The emulation doesn't conforms completely to the case 2 as it is using ordinary unqualified lookup (3.4.1)
and should use lookup in the associated namespaces (3.4.2).

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want this for the IS or a TS?
Do we want the interface inside a namespace product_type ?
Do we want the std::product_type::size / std::product_type::get functions?
Do we want the std::product_type::size / std::product_type::element traits?
Do we want the pt_size / pt_get operators in a future proposal?
Do we want the product_type customization point in addition to the tuple-like one in a future
revision?

Thanks to the LEWG Toronto participants on the review of the previous revision and for agreeing to move

Function Template product_type::get

Implementability

Open Questions

Acknowledgments

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type

this paper to the LEWG.

Thanks to Jens Maurer, Matthew Woehlke and Tony Van Eerd for their comments in private discussion
about structured binding and product types.

Thanks to all those that have commented the idea of a tuple-like generation on the std-proposals ML better
helping to identify the constraints, in particular to J. "Nicol Bolas" McKesson, Matthew Woehlke and Tim
"T.C." Song.

Thanks to David Sankel for revising the R0 and presenting R1.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the
production of this proposal.

Take in account the feedback from Toronto meeting. Next follows the direction of the committee:

Don't even suggest any change to structured binding wording.
Consider the possibility to have product_type customization points using traits in the rationale.
No wording provided.

Take in account the feedback from Kona meeting. Next follows the direction of the committee:

Split the document into 3 documents

Product Type Access
Adaptation of current tuple-like algorithms to ProductType
More ProductType algorithms

See if ProductType implementation for the types supporting structured binding can be generated using
the Reflection TS P0194R3 interface.

This document describes the Product Type Access interface and shows that even if we can generate the
implementation for some of the types, we are unable to generate the whole interface (or at least the authors
don't know how todo it).

History

R3

R2

R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0194r3.html

Adaptation to the adopted structured binding paper P0217R3.
Addition of algorithms working on Product-Types.
Adaptation of <tuple> , <utility> and <array> to Product-Types.

Boost.Fusion Boost.Fusion 2.2 library

http://www.boost.org/doc/libs/1600/libs/fusion/doc/html/index.html

Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

N1691 Explicit Namespaces

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1691.html

N4381 Suggested Design for Customization Points

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html

N4387 Improving pair and tuple, revision 3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html

N4475 Default comparisons (R2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

N4617 N4617 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 DTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

N5131 Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n5131.pdf

P0017R1 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

P0091R1 Template argument deduction for class templates (Rev. 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r1.html

P0095R1 Pattern Matching and Language Variants

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1691.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n5131.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0095r1.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0095r1.pdf

P0144R2 Structured Bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf

P0197R0 Default Tuple-like Access

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf

P0217R1 Proposed wording for structured bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

P0217R3 Proposed wording for structured bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html

P0221R2 Proposed wording for default comparisons

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/P0221R1.html

P0311R0 A Unified Vision for Manipulating Tuple-like Objects

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html

P0326R0 Structured binding: alternative design for customization points

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf

P0327R1 Product Type Access (Revision 1)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf

P0327R2 Product Type Access (Revision 2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf

P0341R0 parameter packs outside of templates

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0341r0.html

PT_impl Product types access emulation and algorithms

https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type

P0194R3 Static reflection

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0194r3.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0221r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0341r0.html
https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0194r3.html

P0385R2 Static reflection: Rationale, design and evolution

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

P0578R0 Static Reflection in a Nutshell

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0578r0.html

P0648R0 Extending Tuple-like algorithms to Product-Types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.html

P0649R0 Other Product-Type algorithms

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0649r0.html

Reflection Product Type access reflection implementation for case 3

https://gist.github.com/jacquelinekay/6bcacee7a3bce7d82b9d6387b6afee96

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0578r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0649r0.html
https://gist.github.com/jacquelinekay/6bcacee7a3bce7d82b9d6387b6afee96

