

Paper Number P0329R1

Date 2016-09-26

Authors Tim Shen <​timshen@google.com​>
Richard Smith <​richard@metafoo.co.uk​>

Audience CWG

Designated Initialization Wording
This is a formal wording for the designated initialization proposal ​P0329R0​.

Wording
Change 8.6 [dcl.init]p1 as follows
 ​braced-init-list:
 { initializer-list ,​ opt​ }
 ​ ​ { designated-initializer-list ,​ opt​ }
 { }
 ​ ​ designated-initializer-list​ :
 ​ ​ designated-initializer-clause
 ​ designated-initializer-list ​ , ​ designated-initializer-clause
 ​ designated-initializer-clause:
 ​ designator brace-or-equal-initializer
 ​ designator:
 ​ . ​ identifier

Change in 8.6.4 [dcl.init.list]p1:

List-initialization​ is initialization of an object or reference from a ​braced-init-list​ . Such an
initializer is called an ​initializer list​ , and the comma-separated ​initializer-clause​ s of the
initializer-list​ ​list​ ​or ​designated-initializer-clause​ s of the ​designated-initializer-list​ are called the
elements​ of the initializer list. [...]

Add a new bullet at the start of 8.6.4 [dcl.init.list]p3:

If the ​braced-init-list​ contains a ​designated-initializer-list​ , ​T ​ shall be an aggregate class whose
non-static data members include the ​identifier​ s of the ​designated-initializer-clause​ s of the
designated-initializer-list​ in declaration order, and aggregate initialization is performed
([dcl.init.aggr]).

mailto:timshen@google.com
mailto:richard@metafoo.co.uk
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0329r0.pdf

Add a new paragraph to 8.6.1 [dcl.init.aggr]:

The initializations of the elements of the aggregate are evaluated in the element order. That is,
every value computation and side effect associated with a given element is sequenced before
every value computation and side effect associated with any element that follows it in order.

Change in 8.6.1 [dcl.init.aggr]p3:

When an aggregate is initialized by an initializer list as specified in 8.6.4, the elements of the
initializer list are taken as initializers for the elements of the aggregate​. If the initializer list is a
designated-initializer-list​ , the aggregate shall be of class type, and the initialized elements of the
aggregate are the elements named by the ​identifier​ s in each ​designated-initializer-clause​ , where
each ​identifier​ shall name a direct non-static data member of the class. Otherwise, the initialized
elements of the aggregate are the first ​n​ elements of the aggregate​, in order​, where ​n​ is the
number of elements in the initializer list, excluding the second and subsequent non-static data
member of a union​. Each ​initialized​ element is copy-initialized from the corresponding
initializer-clause​ ​or the ​brace-or-equal-initializer​ of the corresponding
designated-initializer-clause​ . If ​the initializer-clause is an expression​ ​that initializer is of the form
assignment-expression​ or ​= ​ ​assignment-expression​ and a narrowing conversion (8.6.4) is
required to convert the expression, the program is ill-formed. [Note: If an initializer​-clause​ is
itself an initializer list, the element is list-initialized, which will result in a recursive application of
the rules in this section if the element is an aggregate. — end note] [Example: …]

Change 8.6.1 [dcl.init.aggr]p6 as follows

[Note:​ Static data members​, anonymous union members,​ and anonymous bit-fields are not
considered ​elements​ ​members​ of the class for purposes of aggregate initialization. ​— end note]

Change 8.6.1 [dcl.init.aggr]p7 as follows

An ​initializer-list​ ​initializer list​ is ill-formed if the number of ​initializer-clauses​ ​or
designated-initializer-clauses​ exceeds the number of ​members or​ elements ​to initialize​ ​of the
aggregate, if multiple ​designated-initializer-clause​ s name the same element, or if multiple
members of the same union are initialized elements​.

Change 8.6.1 [dcl.init.aggr]p8 as follows

If there are fewer initializer-clauses in the list than there are elements in the aggregate, then
Each ​non-variant​ element ​of the aggregate that is​ not ​explicitly​ ​an​ initialized ​element is​ ​shall be
initialized from its default member initializer (9.2) or, if there is no default member initializer, from
an empty initializer list (8.6.4). ​If the aggregate is a union, or for each anonymous union member
of a non-union aggregate of class type, if no union member is an initialized element, then:

● If any union member has a default member initializer, that member is initialized from its
default member initializer.

● Otherwise, the first member of the union (if any) is copy-list-initialized from an empty
initializer list.

Change 8.6.1 [dcl.init.aggr]p11 as follows

If an incomplete or empty ​initializer-list​ ​initializer list​ leaves a member of reference type
uninitialized, the program is ill-formed.

Change 8.6.1 [dcl.init.aggr]p17 as follows

[Note:​ When a union is initialized with a brace-enclosed initializer, ​only one non-static data
member can be initialized.​ ​the braces shall only contain an initializer-clause for the first
non-static data member of the union​. [Example:
 union u { int a; const char* b; };
 u a = { 1 };
 u b = a;
 u c = 1; // error
 u d = { 0, "asdf" }; // error
 u e = { "asdf" }; // error
 u f = { .b = "asdf" };
 u g = { .a = 1, .b = "asdf" }; // error
] ​— end note]

Add new paragraph after 13.3.3.1.5 [over.init.list]p1 as follows

If the initializer list is a ​designated-initializer-list​ , a conversion is only possible if the parameter
has an aggregate type that can be initialized from the initializer list according to the rules for
aggregate initialization ([dcl.init.aggr]), in which case the implicit conversion sequence is a
user-defined conversion sequence whose the second standard conversion sequence is an
identity conversion. [Example:
 struct A { int x, y; };
 struct B { int y, x; };
 void f(A a, int); ​// ​ #1
 void f(B b, …); ​// ​ #2
 void g() {
 f({.x = 1, .y = 2}, 0); ​ ​ // OK, calls​ #1
 f({.y = 2, .x = 1}, 0); ​// error, selects​ #1 ​, initialization of ​ a ​ fails
 ​// due to [dcl.init.list]p3

 }
— end example]

