

Paper Number P0329R2

Date 2016-11-21

Authors Tim Shen <​timshen@google.com​>
Richard Smith <​richard@metafoo.co.uk​>

Audience CWG

P0329R2: Designated Initialization
Wording

This is a formal wording for the designated initialization proposal ​P0329R0​.

Wording
Change 8.6 [dcl.init]p1 as follows
 ​braced-init-list:
 { initializer-list ,​ opt​ }
 ​ ​ { designated-initializer-list ,​ opt​ }
 { }
 ​ ​ designated-initializer-list​ :
 ​ ​ designated-initializer-clause
 ​ designated-initializer-list ​ , ​ designated-initializer-clause
 ​ designated-initializer-clause:
 ​ designator brace-or-equal-initializer
 ​ designator:
 ​ . ​ identifier

Add a new paragraph as 8.6 [dcl.init]p20:

The same ​identifier​ shall not appear in multiple ​designator​ s of a ​designated-initializer-list​ .

Change in 8.6.4 [dcl.init.list]p1:

List-initialization​ is initialization of an object or reference from a ​braced-init-list​ . Such an
initializer is called an ​initializer list​ , and the comma-separated ​initializer-clause​ s of the
initializer-list​ ​list​ ​or ​designated-initializer-clause​ s of the ​designated-initializer-list​ are called the
elements​ of the initializer list. [...]

mailto:timshen@google.com
mailto:richard@metafoo.co.uk
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0329r0.pdf

Add a new bullet at the start of 8.6.4 [dcl.init.list]p3:

If the ​braced-init-list​ contains a ​designated-initializer-list​ , ​T ​ shall be an aggregate class where
the names of the non-static direct data members of ​T ​ include the ​identifier​ s of the
designated-initializer-clause​ s of the ​designated-initializer-list​ and those members are declared
in the same order as the corresponding ​designated-initializer-clause​ s. Aggregate initialization is
performed ([dcl.init.aggr]). [Example:

 struct A { int x; int y; }
 void f() {
 A a{.y = 2, .x = 1}; ​// error; designator order does not match declaration order
 }
]

Add a new paragraph to 8.6.1 [dcl.init.aggr]:

The initializations of the elements of the aggregate are evaluated in the element order. That is,
all value computations and side effects associated with a given element are sequenced before
those of any element that follows it in order.

Drafting note: unlike 8.6.4/4, this also covers the initialization of elements for which no initializer
is explicitly provided.

Change in 8.6.1 [dcl.init.aggr]p3 and split it into two paragraphs:

When an aggregate is initialized by an initializer list as specified in 8.6.4, the elements of the
initializer list are taken as initializers for the elements of the aggregate​. The ​explicitly initialized
elements​ of the aggregate are determined as follows:

● If the initializer list is a ​designated-initializer-list​ , the aggregate shall be of class type, the
identifier​ in each ​designated-initializer-clause ​ shall name a direct non-static data
member of the class, and the explicitly initialized elements of the aggregate are the
elements that are, or contain, those members.

● If the initializer list is an ​initializer-list​ , the explicitly initialized elements of the aggregate
are the first ​n​ elements of the aggregate​, in order​, where ​n​ is the number of elements in
the initializer list.

● Otherwise, the initializer list must be ​{} ​, and there are no explicitly initialized elements​.

For​ each ​explicitly initialized​ element​:

● If the element is not an anonymous union object, or is initialized by an ​initializer-list​ , it ​is
copy-initialized from the corresponding ​initializer-clause​ ​or the ​brace-or-equal-initializer
of the corresponding ​designated-initializer-clause​ . If ​the initializer-clause is an
expression​ ​that initializer is of the form ​assignment-expression​ or ​=
assignment-expression​ and a narrowing conversion (8.6.4) is required to convert the

expression, the program is ill-formed. [Note: If an initializer​-clause​ is itself an initializer
list, the element is list-initialized, which will result in a recursive application of the rules in
this section if the element is an aggregate. — end note]

● Otherwise, the object is initialized by the ​designated-initializer-list​ ​{ ​ ​D​ ​} ​, where ​D​ is the
designated-initializer-clause​ naming a member of the anonymous union object. There
shall be only one such ​designated-initializer-clause​ .

[Example: …

 struct A {
 int a;
 string b;
 };

A{.b{"a"}} ​ has the following steps:

1. Initialize a with {}
2. Initialize b with {"a"}

]

Change 8.6.1 [dcl.init.aggr]p6 as follows

[Note:​ Static data members​, non-static data members of anonymous union members,​ and
anonymous bit-fields are not considered ​elements​ ​members​ of the class for purposes of
aggregate initialization. ​— end note]

Change 8.6.1 [dcl.init.aggr]p7 as follows

An ​initializer-list​ is ill-formed if the number of ​initializer-clauses​ exceeds the number of ​members
or​ elements ​to initialize​ ​of the aggregate.

Change 8.6.1 [dcl.init.aggr]p8 as follows

If there are fewer initializer-clauses in the list than there are elements in the aggregate, then
each element ​that is​ not ​an​ explicitly initialized ​element​ shall be initialized from its default
member initializer (9.2) or, if there is no default member initializer, from an empty initializer list
(8.6.4).
[Example: ...

 struct A {
 string a;
 int b = 42;
 int c = -1;
 };

A{.c=21} ​ has the following steps:

1. Initialize a with {}
2. Initialize b with = 42
3. Initialize c with = 21

]

Change 8.6.1 [dcl.init.aggr]p11 as follows

If an incomplete or empty ​initializer-list​ ​initializer list​ leaves a member of reference type
uninitialized, the program is ill-formed.

Change 8.6.1 [dcl.init.aggr]p17 as follows

When a union is initialized with a​n​ ​brace-enclosed​ initializer​ list​, ​there shall not be more than
one explicitly initialized element.​ ​the braces shall only contain an initializer-clause for the first
non-static data member of the union​. [Example:
 union u { int a; const char* b; };
 u a = { 1 };
 u b = a;
 u c = 1; // error
 u d = { 0, "asdf" }; // error
 u e = { "asdf" }; // error
 u f = { .b = "asdf" };
 u g = { .a = 1, .b = "asdf" }; // error
]

Add new paragraph after 13.3.3.1.5 [over.ics.list]p1 as follows

If the initializer list is a ​designated-initializer-list​ , a conversion is only possible if the parameter
has an aggregate type that can be initialized from the initializer list according to the rules for
aggregate initialization ([dcl.init.aggr]), in which case the implicit conversion sequence is a
user-defined conversion sequence whose second standard conversion sequence is an identity
conversion. [Note: Aggregate initialization does not require that the members are declared in
designation order. If, after overload resolution, the order does not match for the selected
overload, the initialization of the parameter will be ill-formed ([dcl.init.list]). [Example:
 struct A { int x, y; };
 struct B { int y, x; };
 void f(A a, int); ​// ​ #1
 void f(B b, …); ​// ​ #2
 void g() {
 f({.x = 1, .y = 2}, 0); ​ ​ // OK; calls​ #1
 f({.y = 2, .x = 1}, 0); ​// error; selects​ #1 ​, initialization of ​ a ​ fails

 ​// due to non-matching member order ([dcl.init.list])
 }
— end example] — end note]

Change 13.3.3.1.5 [over.ics.list]p2 as follows

Otherwise, ​if the parameter type is an aggregate [...]

