
Document Number: P0330R0
Date: 2016-05-15
Revises: N4254
Reply-to: Rein Halbersma <rhalbersma at gmail dot com>
Audience: LEWG

User-Defined Literals for size_t

1 Introduction

We propose the user-defined suffix zu for size_t literals. This allows the suc-
cinct and convenient left-to-right auto variable initialization:

auto s = 0zu; // local variable s has value 0 and type size_t

2 Motivation and Scope

2.1 The main motivations for this proposal are:

• int is the default type deduced from integer literals without suffix;
• size_t is almost unavoidable when using the standard containers’ element

access or size() member functions;
• comparisons and arithmetic with integer types of mixed signs or different

conversion ranks can lead to surprises;
• surprises range from (pedantic) compiler warnings to undefined behavior;
• using existing unsigned integer literals (such as ul) is not a general solu-

tion;
• explicit typing or static_cast are rather verbose;
• a user-defined suffix for size_t literals is a succinct and convenient way

to express coding intent.

2.2 The proposed naming of the literal suffix zu was motivated by the %zu
length modifier for size_t formatted I/O in the C standard library header
<stdio.h>. See 7.21.6.1/7 for fprintf and 7.21.6.2/11 fscanf, numbered rel-
ative to WG14/N1539 (see sections 4.1 and 4.2 for a discussion of this design
decision and possible alternative namings):

printf("%zu", 0zu); // prints 0

2.3 The scope of this proposal is limited to adding a literal suffix zu for the
support type size_t defined in the Standard Library header <cstddef>, and

1

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf

also making this suffix available through the headers <cstdio>, <cstdlib>,
<cstring>, <ctime>, and <cwchar>. See section 4.3 for a discussion of this
design decision and section 7.2 for the proposed wording.

2.4 The previous version of this proposal (WG21/N4254) also proposed adding
a user-defined suffix for literals of the type ptrdiff_t defined in <cstddef>.
This part of the proposal has been dropped based on feedback from LEWG.

2.5 Note that a technically similar proposal could be made for the fixed-width
integer types in the Standard Library header <cstdint>, such as user-defined
suffixes uX for literals of type uintX_t, with X running over { 8, 16, 32, 64 }.
However, these types do not arise naturally when using the standard containers
or algorithms. Furthermore, this would require a more thorough analysis of
a good naming scheme that is both brief, intuitive, and without name clashes
with other user-defined literals in the Standard Library. We therefore do not
propose to add user-defined suffixes for these types.

2.6 For historical reference, see the earlier discussion on std-proposals.

3 Extended Example

3.1 As an illustrative example enabled by this proposal, consider looping over a
vector and accessing both the loop index i as well as the vector elements v[i]

#include <cstddef> // or <cstdio>, <cstdlib>, <cstring>, <ctime>, <cwchar>
#include <vector>
using namespace std::support_literals;

int main() {
auto v = std::vector<int> { 98, 03, 11, 14, 17 };

// loop counter of type size_t, initialized to 0
for (auto i = 0zu, s = v.size(); i < s; ++i) {
/* use both i and v[i] */

}
}

This coding style caches the vector’s size, similar to the end() iterator’s caching
in a range-based for statement. This also fits nicely with the left-to-right auto
variable initialization, as recommended in Effective Modern C++, Item 5 and
GotW #94.

3.2 In the (rare) event that the container’s size_type is not equal to size_t
(e.g. because of an exotic user-defined allocator), compilation will simply fail, so
that no code will break silently. Under these circumstances (as well as in fully
generic code), one has to fall back to the more verbose explicit typing

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4254.html
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/tGoPjUeHlKo
http://shop.oreilly.com/product/0636920033707.do
http://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

// fall back to explicit typing when container::size_type != size_t
for (auto i = decltype(v.size()){0}, s = v.size(); i < s; ++i) { /* ... */ }

3.3 A loop counter of type int gives the most succinct code, but is likely to
lead to sign-related compiler warnings (except for non-standard containers such
as QVector for which the size() member function returns int), or even to
undefined behavior from signed integer overflow

// might lead to compiler warnings and signed integer overflow
for (auto i = 0; i < v.size(); ++i) { // -Wsign-compare
std::cout << i << ": " << v[i] << '\n'; // -Wsign-conversion

}

The above code triggers compiler warnings (shown for Clang and g++). Ad-
mittedly, those warnings are rather stringent. But they are not, in general,
harmless. Furthermore, in many companies, developers are not free to adjust
project-wide mandatory warning levels. But more importantly, even when all
compilers warnings have been suppressed, the above loop might (for very large
containers) lead to signed integer overflow (which is undefined behavior).

3.4 The example in section 3.3 makes it clear that counters in loops
over standard containers should be of unsigned integral type. Note that
[support.types]/7 recommends that implementations choose types for
size_t whose integer conversion ranks are no greater than that of signed
long int unless a larger size is necessary to contain all the possible values.
This makes unsigned long loop counters (which have the recommended
maximum conversion rank and which can use the suffix ul) a seemingly viable
alternative to section 3.1

// not guaranteed to be equivalent to section 3.1
for (auto i = 0ul, s = v.size(); i < s; ++i) { /* ... */ }

Note, however, because [support.types]/6 leaves size_t an implementation-
defined unsigned integer type, it is not guaranteed that unsigned long (or
unsigned long long for that matter) is of the same type as size_t. Moreover, a
user-defined suffix for size_t literals also expresses coding intent, and therefore
increases code readability and maintainability.

3.5 A fully equivalent alternative to section 3.1 is to name the type of the loop
index

// equivalent to section 3.1, but more verbose
for (auto i = std::size_t{0}, s = v.size(); i < s; ++i) { /* ... */ }

3

http://doc.qt.io/qt-5/qvector.html#size

This works under the same circumstances as this proposal (with a fall-
back to decltype(v.size()) for exotic containers or fully generic code).
Its main drawback is that it is more verbose, especially if the equivalent
static_cast<std::size_t>(0) were to be employed.

3.6 As an aside, note that the above extended example is not meant to imply
a definitive coding style for all index-based for loops. E.g., this particular ex-
ample might be improved by a range-based for statement that emits a size_t
index deduced from a hypothetical zero-based integral_range object initial-
ized to v.size()

// integral_range not actually proposed here, loop over [0, v.size())
for (auto i : integral_range(v.size()) { /* ... */ }

However, for non-zero-based integer ranges (e.g. when skipping the first few
elements), the same type deduction issues would reappear, and it would become
convenient to write

// integral_range not actually proposed here, loop over [1, v.size())
for (auto i : integral_range(1zu, v.size()) { /* ... */ }

Regardless of the benefits of such a hypothetical range-based approach for in-
dexed for loops, we therefore argue that a user-defined suffix for size_t literals
has its own merits. Note this proposal does not enforce the use of size_t literals,
it merely enables (and perhaps encourages) them.

4 Design Decisions

4.1 The previous version of this paper (WG21/N4254) proposed the shorter
suffix z. Based on feedback from LEWG, this has been changed to zu. The
main rationale for this change is that z alone is not the entirety of what is
needed in C I/O formatting. The rather strong consensus was not to use only
the modifier z, but to use the complete form zu.

4.2 For purposes of bikeshedding, we note that other suffixes than the proposed
zu that contain the letter z would also not conflict with existing literals (see
section 5 for a full survey). A viable alternative might be to use e.g. the suffix
sz for size_t literals. This loses the congruence with the C I/O length modifier
%zu, but sz is perhaps easier to remember as a mnemonic for size_t.

4.3 Note that because other standard headers (<cstdio>, <cstdlib>,
<cstring>, <ctime> and <cwchar>) also define size_t, we propose that
these headers also make the user-defined suffix zu available. In section 7.2,
we use wording similar to that of [iterator.container]/1 that makes the
<iterator> header available through inclusion of any of the containers, strings
or regular expressions headers.

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4254.html

4.4 This proposal follows the existing practice established in WG21/N3642
with respect to the constexpr (present) and noexcept (absent) speci-
fiers, as well as the use of an appropriately named inline namespace
std::literals::support_literals.

4.5 There are no decisions left up to implementers, because the proposed word-
ing (see section 7) forms a full specification.

5 Survey of Existing Literal Suffixes

5.1 The literal suffixes for builtin integer types are described in Table 5 of
[lex.icon]/2. These suffixes (u or U optionally followed by either l or L or
by either ll or LL) do not contain the letter z and do not conflict with our
proposal.

5.2 The literal suffixes for builtin floating types are described in [lex.fcon]/1.
These suffixes (one of f, l, F, L) do not contain the letter z and do not conflict
with our proposal.

5.3 The Standard Library header <chrono> contains user-defined suffixes for
time duration literals, specified in [time.duration.literals]. The suffixes
currently in use (h, min, s, ms, us, ns) do not contain the letter z and do not
conflict with our proposal.

5.4 The Standard Library header <complex> contains user-defined suffixes for
complex number literals, specified in [complex.literals]. The suffixes cur-
rently in use (il, i, if) do not contain the letter z and do not conflict with our
proposal.

5.5 The Standard Library header <string> contains user-defined suffixes for
string literals, specified in [basic.string.literals]. The suffix currently in
use (s) does not contain the letter z and does not conflict with our proposal.

5.6 The Technical Report WG21/N3871 proposes user-defined literals for deci-
mal floating-point literals. The proposed suffixes (DF, DD, DL, df, dd, dl) do not
contain the letter z and do not conflict with our proposal.

5.7 The Graphics Technical Specification WG21/P0267R0 proposes user-defined
suffixes for double literals. The proposed suffixes (ubyte, unorm) do not contain
the letter z and do not conflict with our proposal.

5.8 The Meta library defines a _z suffix for std::integral_constant<size_t,
N> literals using the template <char...> operator "" overload (with N com-
puted at compile-time from the template parameter pack).

Even though Meta is a support library used in the reference implementation
of the proposed Ranges Technical Specification WG21/N4569, the Ranges TS
does not rely on Meta’s user-defined suffix _z. In fact, Meta itself does not even
use _z internally. We therefore do not anticipate a conflict with our proposal.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3642.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
https://ericniebler.github.io/meta/group__integral.html#gaddea0d053893b5bec6ba3d75af70624e
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf

5.9 Boost.Hana exposes user-defined suffixes (_c, _s) for integral constant and
compiletime string literals, and also internally defines user-defined literals (_st,
_nd, _rd, _th) for tuple indexing. The suffixes in use do not conflict with our
proposal.

5.10 Boost.Multiprecision exposes user-defined suffixes (_cppi, _cppui, _cppiN,
_cppuiN, with N an integral power of two) for high precision number literals. The
suffixes in use do not conflict with our proposal.

5.11 To the best of our knowledge, other than the aforementioned standard
library headers, Technical Specifications and popular open source libraries, there
are no other popular user-defined literals that would conflict with our proposal.

6 Impact on the Standard

6.1 This proposal does not depend on other library components, and nothing
depends on it. It is a pure library extension, but does require additions (though
no modifications) to the standard header <cstddef>, (see section 7.1), and also
exposing those additions through the headers <cstdio>, <cstdlib>, <cstring>,
<ctime>, and <cwchar> (see section 7.2).

6.2 This proposal can be implemented using C++14 compilers and libraries,
and it does not require language or library features that are not part of C++14.
In fact, this proposal is entirely implementable using only C++11 language
features.

6.3 The consequences of adopting the proposed literal suffix zu into the Stan-
dard are that both novices and occasional programmers, as well as experienced
library implementors, can use left-to-right auto variable initializations with
size_t literals, without having to define their own literal suffix with leading
underscore _zu in order to do so.

Note that other existing or future Standard Library types (e.g. chrono::duration
or complex) are prevented from adopting the same literal suffix, unless they
use overloads of the corresponding operator "" that take arguments other
than unsigned long long (because [lex.ext]/3 gives these overloads lower
precedence during overload resolution).

6.4 There are no (anticipated) conflicts with other literal suffixes, either for
builtin types, in other (proposed) Standard Library types, the various Technical
Specifications, or in popular open source libraries such as Boost (see section 5).

Note that [usrlit.suffix]/1 states that literal suffix identifiers that do not
start with an underscore are reserved for future standardization. This means
that even if there were a popular open source library with a user-defined suffix
_zu, there would only be a possible conflict with our proposed zu suffix for
size_t literals if that suffix from a third-party library would also be accepted
for standardization.

6

http://www.boost.org/doc/libs/develop/libs/hana/doc/html/namespaceboost_1_1hana_1_1literals.html
http://www.boost.org/doc/libs/1_60_0/libs/multiprecision/doc/html/boost_multiprecision/tut/lits.html

6.5 There are, however, three active CWG issues (cwg#1266, cwg#1620 and
cwg#1735) that could impact this proposal. All three issues note that in im-
plementations with extended integer types, the decimal-literal in a user-defined
integer literal might be too large for an unsigned long long to represent. Sug-
gestions (but no formal proposals) were made to either fall back to a raw literal
operator or a literal operator template, or to allow a parameter of an extended
integer type. The latter suggestion would be easiest to incorporate into this
proposal.
6.6 There is a reference implementation and small test suite available for in-
spection. Note that the reference implementation uses namespace xstd and
underscored suffix _zu because of the restriction from [lex.ext]/10 that a pro-
gram containing a user-defined suffix without an underscore is ill-formed, no
diagnostic required.
6.7 This proposal successfully compiles and runs on g++ >= 4.7.3, clang >=
3.1 and Visual C++ >= 2015 (possibly on earlier versions of Visual C++ if
constexpr literals are not used).

7 Proposed Wording

7.1 Insert in subclause [support.types]/1 in the synopsis of header <cstddef>
at the appropriate place the namespace std::literals::support_literals:

namespace std {
inline namespace literals {
inline namespace support_literals {
constexpr size_t operator "" zu(unsigned long long);

}
}

}

7.2 Insert a new subclause [support.literals] between [support.types]
and [support.limits] as follows (numbered relative to WG21/N4582):

18.3 Suffixes for support types [support.literals]
1 This section describes a literal suffix for constructing size_t liter-
als. The suffix zu creates values of type size_t.

constexpr size_t operator "" zu(unsigned long long u);

2 Returns: static_cast<size_t>(u).
3 In addition to being available via inclusion of the <cstddef>
header, this literal operator is available when any of the following
headers is included: <cstdio>, <cstdlib>, <cstring>, <ctime>,
and <cwchar>.

7

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1266
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1620
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1735
https://bitbucket.org/rhalbersma/xstd/src/41b35cd8db50a529e426bae8f2669283247c1b6d/include/xstd/cstddef.hpp?at=default
https://bitbucket.org/rhalbersma/xstd/src/41b35cd8db50a529e426bae8f2669283247c1b6d/test/src/cstddef.cpp?at=default
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4582.pdf

8 Acknowledgments

We gratefully acknowledge Walter E. Brown for acting as our locum in committee
meetings and for his valuable feedback. We also acknowledge feedback on the
previous version of this proposal from Jerry Coffin and Andy Prowl on <Lounge
C++>, guidance from Daniel Krügler, as well as input from various participants
on std-proposals.

9 References

[Boost.Hana] Louis Dionne: A modern C++ metaprogramming library http:
//www.boost.org/doc/libs/1_61_0/libs/hana/doc/html/namespaceboost_1_
1hana_1_1literals.html
[Boost.Multiprecision] John Maddock and Christopher Kormanyos: Ex-
tended precision arithmetic types for floating point, integer and rational
arithmetic http://www.boost.org/doc/libs/1_61_0/libs/multiprecision/doc/
html/boost_multiprecision/tut/lits.html
[Effective Modern C++] Scott Meyers: 42 Specific Ways to Improve Your
Use of C++11 and C++14 (Item 5: Prefer auto to explicit type declarations.)
http://shop.oreilly.com/product/0636920033707.do
[GotW #94] Herb Sutter: AAA Style (Almost Always Auto) http://herbsutter.
com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
[Meta] Eric Niebler: A tiny metaprogramming library https://ericniebler.github.
io/meta/group__integral.html#gaddea0d053893b5bec6ba3d75af70624e
[N3642] Peter Sommerlad: User-defined Literals for Standard Library Types
(part 1 - version 4) http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2013/n3642.pdf
[N3871] Dietmar Kühl: Proposal to Add Decimal Floating Point Support to
C++ (revision 2) http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n3871.html
[N4254] Rein Halbersma: User-defined Literals for size_t http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2014/n4254.html
[N4569] Eric Niebler: Working Draft, C++ Extensions for Ranges http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf
[P0276R0] Michael B. McLaughlin, Herb Sutter and Jason Zink: A Proposal
to Add 2D Graphics Rendering and Display to C++ http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
[QVector] http://doc.qt.io/qt-5/qvector.html#size
[std-proposals] Morwenn Edrahir: User defined literal for size_t https://
groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/tGoPjUeHlKo

8

http://www.boost.org/doc/libs/1_61_0/libs/hana/doc/html/namespaceboost_1_1hana_1_1literals.html
http://www.boost.org/doc/libs/1_61_0/libs/hana/doc/html/namespaceboost_1_1hana_1_1literals.html
http://www.boost.org/doc/libs/1_61_0/libs/hana/doc/html/namespaceboost_1_1hana_1_1literals.html
http://www.boost.org/doc/libs/1_61_0/libs/multiprecision/doc/html/boost_multiprecision/tut/lits.html
http://www.boost.org/doc/libs/1_61_0/libs/multiprecision/doc/html/boost_multiprecision/tut/lits.html
http://shop.oreilly.com/product/0636920033707.do
http://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
http://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://ericniebler.github.io/meta/group__integral.html#gaddea0d053893b5bec6ba3d75af70624e
https://ericniebler.github.io/meta/group__integral.html#gaddea0d053893b5bec6ba3d75af70624e
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3642.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3642.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4254.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4254.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
http://doc.qt.io/qt-5/qvector.html#size
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/tGoPjUeHlKo
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/tGoPjUeHlKo

10 Change History

1. 2014-11-21; Published as N4254.
2. 2016-05-15; Published as P0330R0; summarized LEWG’s view re N4254;

dropped the proposed suffix for ptrdiff_t; changed the proposed suffix
for size_t to zu; added survey of existing literal suffixes.

9

	User-Defined Literals for size_t
	1 Introduction
	2 Motivation and Scope
	3 Extended Example
	4 Design Decisions
	5 Survey of Existing Literal Suffixes
	6 Impact on the Standard
	7 Proposed Wording
	8 Acknowledgments
	9 References
	10 Change History

