
Document Number: P0350R3

Date: 2019-07-23

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Integrating simd with parallel
algorithms

ABSTRACT

This paper discusses a new execution policy for integrating simd with parallel algo-
rithms.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Introduction 2
4 Parallel Algorithms 2
A Bibliography 13



P0350R3 1 Changelog

1 CHANGELOG

1.1 changes from revision 0

Previous revision: [P0350R0]

• Update to apply against C++17 wording.

• Removed executors discussion because the executors design has not left SG1
yet.

• Updated example code to reflect changes in P0214.

1.2 changes from revision 1

Previous revision: [P0350R1]

• Updated code to match [N4744].

• Fixed a bug in the for_each example implementation.

• Improved iota and for_each example implementations with constexpr-if.

• Discuss impact on all algorithms.

1.3 changes from revision 2

Previous revision: [P0350R2]

• Discuss ABI tag of std::generate callables.

• Add a Tony Table.

• Note that remove and remove_copy are implicitly vectorizable.

2 STRAW POLLS

2.1 sg1 at oulu

Poll: Ship it to LEWG?
SF F N A SA

6 6 2 0 0

1



P0350R3 3 Introduction

2.2 lewg at albuquerque

Poll: Forward the paper to LWG?
SF F N A SA

1 1 2 1 1
→ Paper needs a revision: LEWG wants a list of affected algorithms and an update
to concept requirements.

3 INTRODUCTION

Parallel Algorithms enable implementations of the existing STL algorithms to use
non-sequential semantics when executing the user-supplied code (explicit callable
or implicit operator call). The first argument to the algorithm function determines
this change in execution semantics via an execution policy. This paper introduces
a new execution policy, called execution::simd1. execution::simd requires user-
provided function objects to be callable with simd<T, Abi> arguments instead of the
T arguments the std::execution::seq variant would use. The algorithm therefore
processes chunks of simd<T, Abi>::size() objects concurrently. The execution or-
der of the chunks retains the sequential semantics of the non-parallel algorithms.

As a consequence, the applicability of the execution policy is limited to itera-
tors where Iterator::value_type is a vectorizable type [N4744, [parallel.simd.gen-
eral]]. A future extension of simd may lift this restriction by allowing certain (or all)
user-defined types as first template argument to simd. A different conceivable ex-
tensions is a recursive destructuring applied inside the algorithm, subsequent cre-
ation of a corresponding number of simd objects, and a call to the function ob-
ject with a corresponding number of arguments. (E.g. application of an algorithm on
std::vector<std::pair<float, float>> calls the function object with simd<float>,
simd<float> instead of simd<std::pair<float, float>>.)

4 PARALLEL ALGORITHMS

4.1 example

Consider the example in Listing 1. The iota and for_each functions each could cre-
ate an internal simd iterator adaptor, depending on the iterator category. Being able
to determine whether the storage, the iterator points to, is contiguous, is most im-
portant in this context as it enables vector loads and stores. Since the std::vector

1 An alternative suggestion for the name is execution::simd_type.

2



P0350R3 4 Parallel Algorithms

before after (with optimized epilogue)

using V = stdx::native_simd<float>;
constexpr int N = 60;

template <class T> T something(T);

auto f(const std::array<float, N>& data)
{

std::array<float, N> output;
size_t i = 0;
for (; i + V::size() <= N; i += V::size()) {

V x(&data[i], stdx::element_aligned);
x = something(x + 1);
x.copy_to(&output[i], stdx::element_aligned);

}
for (; i < N; ++i) {

output[i] = something(data[i] + 1);
}
return output;

}

using V = stdx::native_simd<float>;
constexpr int N = 60;

template <class T> T something(T);

auto f(const std::array<float, N>& data)
{

std::array<float, N> output;
stdx::transform(std::execution::simd,

data.begin(), data.end(), output.begin(),
[](auto x) {

return something(x + 1);
});

return output;
}

Table 1: Tony Table

1 std::vector<float> data;
2 data.resize(99);
3 iota(execution::simd, data.begin(), data.end(), 0.f);
4 for_each(execution::simd, data.begin(), data.end(), [](auto &x) {
5 x *= x;
6 });

Listing 1: Example using execution::simd with iota and for_each.

iterators are contiguous iterators, the example implementations shown in Listing 2
and Listing 3 could be used for the example.

Both implementations might be improved with a prologue that enables aligned
loads and stores. Also note that for_each allows the Function parameter to mutate
the argument if the iterator is a mutable iterator. The implementation uses a compile-
time trait to determine whether the function f uses a reference parameter, in which
case it stores the temporary simd object back. Otherwise, the store is optimized
away.

Figure 1 shows a visualization how the iota implementation works. The init simd
object is stored via vector stores to 4 (assuming native simd::size() == 4) elements
in the std::vector. In each iteration the init object is incremented by simd::size()
and stored to the following elements in the std::vector. Since the std::vector has
99 elements, the last three elements cannot be initialized with a vector store of four

3

https://godbolt.org/z/5VBv6k


P0350R3 4 Parallel Algorithms

1 template <size_t N, class ContiguousIterator>
2 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
3 typename ContiguousIterator::value_type first_value) {
4 if constexpr (N > 0) {
5 if (distance(first, last) >= N) {
6 using T = ContiguousIterator::value_type;
7 using V = simd<T, simd_abi::deduce_t<T, N>>;
8 const V init = V([&](auto i) { return T(i); }) + first_value;
9 store(init, std::addressof(*first), element_aligned);

10 first += V::size();
11 }
12 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
13 }
14 }
15

16 template <class ContiguousIterator>
17 void iota(execution::simd_policy, ContiguousIterator first, ContiguousIterator last,
18 typename ContiguousIterator::value_type first_value) {
19 using T = ContiguousIterator::value_type;
20 using V = native_simd<T>;
21 V init = V([&](auto i) { return T(i); }) + first_value;
22 const V stride = T(V::size());
23 for (; distance(first, last) >= V::size(); first += V::size(), init += stride) {
24 store(init, std::addressof(*first), element_aligned);
25 }
26 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
27 }

Listing 2: Implementation idea for the iota function used in Listing 1.

4



P0350R3 4 Parallel Algorithms

1 template <size_t N, class ContiguousIterator, class UnaryFunction>
2 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
3 UnaryFunction f) {
4 if constexpr (N > 0) {
5 using T = ContiguousIterator::value_type;
6 using V = simd<T, simd_abi::deduce_t<T, N>>;
7 if (distance(first, last) >= V::size()) {
8 V tmp(std::addressof(*first), element_aligned);
9 f(tmp);

10 if constexpr (is_functor_argument_mutable_v<UnaryFunction, V>) {
11 store(tmp, std::addressof(*first), element_aligned);
12 }
13 }
14 epilogue<V::size() / 2>(first, last, f);
15 }
16 }
17

18 template <class ContiguousIterator, class UnaryFunction>
19 void for_each(execution::simd_policy, ContiguousIterator first,
20 ContiguousIterator last, UnaryFunction f) {
21 using V = native_simd<ContiguousIterator::value_type>;
22 for (; distance(first, last) >= V::size(); first += V::size()) {
23 V tmp(std::addressof(*first), element_aligned);
24 f(tmp);
25 if constexpr (is_functor_argument_mutable_v<UnaryFunction, V>) {
26 store(tmp, std::addressof(*first), element_aligned);
27 }
28 }
29 epilogue<V::size() / 2>(first, last, f);
30 }

Listing 3: Implementation idea for the for_each function used in Listing 1.

5



P0350R3 4 Parallel Algorithms

0
1
2
3

0
1
2
3

+
+
+
+

4
4
4
4

=
=
=
=

4
5
6
7

4
5
6
7

+
+
+
+

4
4
4
4

=
=
=
=

8
9

10
11

88
89
90
91

+
+
+
+

4
4
4
4

=
=
=
=

92
93
94
95

96
96

+
+

0
1

=
=

96
97

98 + 0 = 98

Figure 1: Visualization of chunking the iota call with 𝒲T = 4 in Listing 1.

elements. Instead the epilogue recursion generates a new init simd object for size
2 and subsequently for size 1.

Figure 2 visualizes the end of the for_each implementation. The main for loop
processes four elements of the std::vector in parallel. It executes a vector load, calls
the user-provided function with the temporary simd object, and executes a vector
store back to the same memory location. The remaining three elements are again
handled by an epilogue recursion which divides the number of processed elements
by 2 with every step.

For both algorithms it would be perfectly valid to implement the epilogue as a
sequential loop using simd objects with size 1.

6



P0350R3 4 Parallel Algorithms

92
93
94
95

*
*
*
*

92
93
94
95

=
=
=
=

92²
93²
94²
95²

96
97

*
*

96
97

=
=

96²
97²

98 * 98 = 98²

Figure 2: Visualization of chunking the for_each call with 𝒲T = 4 in Listing 1.

7



P0350R3 4 Parallel Algorithms

4.2 discussion of algorithms

Copies In general, the execution::simd policy requires algorithms to make a copy
from the input sequence. For now, since simd only supports arithmetic types
and simd dœs not return lvalue references to its values, it is not observable
whether a copy was made. With two exceptions:

• Modification of the input sequence via different means than the function
parameter(s) will not modify the value of the function parameter(s).

• Using mutable iterators, assignment to the simd (lvalue reference) pa-
rameter of the user-supplied function object will not modify the output
sequence until after the function has returned (cf. Listing 3).

Note that most non-modifying sequence operations allow modification of the
sequence by using a non-const lvalue reference parameter for the user-supplied
function object.

Predicates Algorithms that take a predicate returning a bool have two possible vec-
torization strategies:

1. The predicate still returns bool. In this case, every predicate must exe-
cute a simd_mask reduction. This makes it simple to short-circuit in the
algorithm implementation but may unnecessarily restrict the achievable
parallelization.

2. The predicate returns simd_mask. In this case 𝒲ForwardIterator∶∶value_type re-
ductions can happen in parallel. Short-circuiting is still possible, but re-
quires a simd_mask reduction on each step (QoI question).

I recommend to allow both. Let the algorithm switch the strategy depending
on the return type of the predicate. Let the user decide on the trade-offs.

Complexity requirements For many algorithms, the complexity requirement states
“Applies f exactly last - first times”. In the execution::simd case, the
number of applications of f is reduced by an unspecified factor.

Sorting The Compare function object type is required to return a value that is con-
textually convertible to bool. For sorting, it is important that overloads using
the execution::simd policy work with simd_mask instead of bool. It is not use-
ful for the sort algorithm to know whether all/any/some/none of the compared
values are “less than”. It requires a mask object to know the “less than” relation
for each individual value.

8



P0350R3 4 Parallel Algorithms

4.3 design alternative

There are subtle differences in how the execution::simd specializations need to be
used (e.g. std::generate currently requires the generator function to return objects
that can be assigned to a dereferenced ForwardIt; the execution::simd specializa-
tion requires the generator function to return objects of type simd<ForwardIt::value_-
type>). An attempt to fit execution::simd_policy into the existing wording results
in some special-casing in the algorithm specifications. This observation leads to the
question whether a new execution policy is really the best approach. The alternative
would be a duplication of algorithms to variants with a simd_ prefix in their name.
Example:
simd_for_each(data.begin(), data.end(), [](auto &x) {

x *= x;
});

This alternative would not reduce the amount of wording/complexity though, since
now a lot of the algorithm wording would need to be duplicated. However, this would
allow a very simple reduction of the number of algorithms that support simd execu-
tion.

4.4 affected algorithms

The following algorithms have an ExecutionPolicy overload and can work with a
execution::simd_policy specialization:

• all_of, any_of, none_of

• for_each, for_each_n

• find, find_if, find_if_not

• find_end

• find_first_of

• adjacent_find

• count, count_if

• mismatch

• equal

• search, search_n

9



P0350R3 4 Parallel Algorithms

• copy, copy_n (no real need; can be implicitly vectorized)

• copy_if

• swap (no real need; can be implicitly vectorized)

• transform

• replace, replace_if, replace_copy, replace_copy_if

• fill, fill_n (no real need; can be implicitly vectorized)

• generate, generate_n

Note that the generator function passed to generate/generate_n dœs not ex-
pect any arguments and thus has no interface for the algorithm to request
a certain ABI tag from the function (template). Consequently, either the user
could choose the ABI tag (via the return type) and expect values at the tail (be-
yond end) to be discarded. Alternatively, the algorithm could pass an arbitrary
(or default- or zero-initialized) data-parallel object to the function. This would
communicate the expected return type of the generator function. See Figure 3
for an example. It is possible to allow both variants.

• remove, remove_copy (no real need; can be implicitly vectorized)

• remove_if, remove_copy_if

• unique, unique_copy

• reverse, reverse_copy (no real need; can be implicitly vectorized)

• rotate, rotate_copy (no real need; can be implicitly vectorized)

• is_partitioned, partition, stable_partition, partition_copy, partition_-
point

• sort,stable_sort, partial_sort, partial_sort_copy, is_sorted, is_sorted_-
until

• nth_element

• merge, inplace_merge

• includes, set_union, set_intersection, set_difference, set_symmetric_-
difference

10



P0350R3 4 Parallel Algorithms

std::array<float, N> data;

// let the generator function choose the ABI tag and discard
// N % native_simd<float>::size() values beyond data.end():
std::generate(std::execution::simd, data.begin(), data.end(), []() {

return native_simd<float>();
});

// Alternative: the algorithm tells the generator function via the argument
// what data-parallel type it expects to get.
std::generate(std::execution::simd, data.begin(), data.end(), [](auto x) {

return x = 0;
});

Figure 3: Generator function return type example.

• min_element, max_element, minmax_element

• lexicographical_compare

The remaining algorithms have no obvious use for the specialization:

• move makes no sense until we can create simd<T> types for pointers (likely) and
class types (less likely).

lower_bound, upper_bound, equal_range, and binary_search may benefit from
simd usage, but currently do not provide ExecutionPolicy overloads.

I have not considered is_heap and is_heap_until yet.

4.5 initial wording for the policy

Add a new execution policy to [N4659, §23.19.2]:
§23.19.2 [execution.syn]

// 23.19.6, parallel and unsequenced execution policy
class parallel_unsequenced_policy;

// 23.19.7, simd execution policy
class simd_policy;

// 23.19.78, execution policy objects:
inline constexpr sequenced_policy seq{ unspecified };
inline constexpr parallel_policy par{ unspecified };
inline constexpr parallel_unsequenced_policy par_unseq{ unspecified };
inline constexpr simd_policy simd{ unspecified };

11



P0350R3 4 Parallel Algorithms

Renumber §23.19.7 to §23.19.8 and add §23.19.7 [execpol.simd]:

class simd_policy { unspecified };

1 The class simd_policy is an execution policy type used as a unique type to disambiguate parallel al-
gorithm overloading and indicate that a parallel algorithm’s execution may be vectorized using simd for
interfacing with user-provided functionality.

2 During the execution of a parallel algorithm with the execution::simd_policy policy, if the invocation
of an element access function exits via an uncaught exception, terminate() shall be called.

Add to §23.19.8 [execpol.objects]:

inline constexpr execution::simd_policy execution::simd{ unspecified };

[N4659, §28.4.2] defines requirements on user-provided function objects. This might
be the right place to add:

§28.4.2 [algorithms.parallel.user]

4 Function objects passed into parallel algorithms instantiated with the execution::simd execution policy shall:

• be callable with arguments of type simd<Iterator::value_type, Abi>, for any ABI tag Abi, for all
arguments that otherwise would be of type Iterator::value_type;

• return objects of type simd<Iterator::value_type, Abi>, if the function object is otherwise expected
to return objects assignable to a dereferenced Iterator object;

• return objects of type simd_mask<Iterator::value_type, Abi> or bool, if the function object is
otherwise expected to return bool.

The following subsection in [N4659, §28.4.3] defines the semantics of the execution
policies. A new paragraph for execution::simd is needed. The intent is to

1. constrain execution to the calling thread,

2. allow implementations to assume unordered access for all internal element
access functions (most importantly loads and stores),

3. apply user-provided function objects in the order the simd chunks are created
from sequential iteration over the iterator(s).

12



P0350R3 A Bibliography

§28.4.3 [algorithms.parallel.exec]
16 The invocations of element access functions in parallel algorithms invoked with an execution policy object of type

execution::simd_policyare permitted to execute in an unordered fashion in the calling thread, except for the
application of user-provided function objects. User-provided function objects are called with an implementation-
defined number of sequence elements combined into a simd<T, Abi> object. The type for Abi is chosen by the
implementation. It may be different for subsequent applications of the user-provided function in the same parallel
algorithm invocation. The type for T is the decayed type of the sequence elements. The order of elements in the
simd object is equal to the order of the corresponding elements in the sequence argument. The invocation order
of user-provided function objects is sequential.

It is my understanding that we do not want to add anything to [N4659, §28.4.4 [al-
gorithms.parallel.exceptions]] at this point. The situation is simpler for the execution::simd
policy. It is almost equivalent to the seq policy.

4.6 wording for individual algorithms

§28.7 [alg.sorting]

2 Compare is a function object type. The return value of the function call operation applied to an object of type
Compare, when contextually converted to bool, yields true if the first argument of the call is less than the
second, and false otherwise. If the ExecutionPolicy is execution::simd_policy, the return type of the
function call operation applied to an object of type Compare is a specialization of simd_mask. Its 𝑖-th element
in the simd_mask yields true if the value of the 𝑖-th element of the first argument of the call is less than the
corresponding element of the second, and false otherwise. Compare comp is used throughout for algorithms
assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the
dereferenced iterator.

I have not identified the need for any additional wording in the subsections on the
individual algorithms for the execution::simd_policy at this point.

A BIBLIOGRAPHY

[N4744] Jared Hoberock, ed. Technical Specification for C++ Extensions for Par-
allelism Version 2. ISO/IEC JTC1/SC22/WG21, 2018. url: https : / / wg21 .
link/n4744.

13

https://wg21.link/n4744
https://wg21.link/n4744


P0350R3 A Bibliography

[P0350R0] Matthias Kretz. P0350R0: Integrating datapar with parallel algorithms
and executors. ISO/IEC C++ Standards Committee Paper. 2016. url: https:
//wg21.link/p0350r0.

[P0350R1] Matthias Kretz. P0350R1: Integrating simd with parallel algorithms. ISO/IEC
C++ Standards Committee Paper. 2017. url: https://wg21.link/p0350r1.

[P0350R2] Matthias Kretz. P0350R2: Integrating simd with parallel algorithms. ISO/IEC
C++ Standards Committee Paper. 2018. url: https://wg21.link/p0350r2.

[N4659] Richard Smith, ed. Working Draft, Standard for Programming Language
C++. ISO/IEC JTC1/SC22/WG21, 2017. url: https://wg21.link/n4659.

14

https://wg21.link/p0350r0
https://wg21.link/p0350r0
https://wg21.link/p0350r1
https://wg21.link/p0350r2
https://wg21.link/n4659

	1 Changelog
	1.1 Changes from revision 0
	1.2 Changes from revision 1
	1.3 Changes from revision 2

	2 Straw Polls
	2.1 SG1 at Oulu
	2.2 LEWG at Albuquerque

	3 Introduction
	4 Parallel Algorithms
	4.1 Example
	4.2 Discussion of algorithms
	4.3 Design Alternative
	4.4 Affected algorithms
	4.5 Initial wording for the policy
	4.6 Wording for individual algorithms

	A Bibliography

