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1. Introduction

This is a paper to continue the specific features and needs towards supporting Heterogeneous
Devices which was discussed in an evening session at Jacksonville 2015 [p0236r0]. In that
evening session, Michael Wong presented the motivation to support Heterogeneous devices
and how it has been done in OpenMP, followed by a plan to have this support in C++ by 2020.
This was followed by showing two C++-specific designs that supported this direction. Hartmut
Kaiser presented the HPX design which caters more to a high-performance computing
viewpoint. Lee Howes presented the Khronos SYCL/OpenCL design which caters more to a
consumer device viewpoint. The discussion that followed, indicated enthusiastic support to
move C++ towards full support for Heterogeneous computing by 2020, likely through an initial
TS.

C++ is in fact not that far away from it. The enablement of SYCL and HPX demonstrates how
this can be done with only a few medium-sized additions. But it does open the door for C++ to
become the dominant language that can support all the MIPS in your system, rather than forcing



you to drop out to some low-level or proprietary language to gain access to the highest MIPS.
This is traditionally what we had to do to access SIMD or GPU devices.

C++ is also well positioned to fully integrate the HPC and consumer device market with a single
programming model, rather than the separate and diverse programming models in use today,
where OpenMP/MPI dominates HPC and OpenCL and other models dominate consumer
devices.

At the evening session, there was feedback guidance to focus on consumer devices such as
mobile devices. There was comment that some DOE labs would favor switching completely to
C++-only code instead of any OpenMP/OpenACC code at all in the future. There was also
concern that FPGAs may be too-far reaching a target market. Overall, it was felt that if we have
a focused approach with a goal, C++ would only be about 20% away as it is already nearly 80%
on target to support massive dispatch on heterogeneous devices.

This paper aims to discuss what is needed for language support in the form of lambdas and
reflections.. A separate paper [P0362R0] will comment on current directions in concurrency
aspects with regards to executors, simd, accessors, and address space, from the point of view
of the SYCL experience in implementing support for heterogeneous devices. A separate paper
[PO361R0] will discuss the HPX guidance and experience. There will be many surprising
parallels between the two groups’ approaches from which SG14 plans to abstract a common
design.

2. SYCL features to support heterogeneous
computing

SYCL grew out of demand to better support C++ in OpenCL (which has been traditionally based
on C99). OpenCL uses a programming model with separate host and device code. Recent
efforts to add C++ support directly to OpenCL still maintain this separation. But the weak link
between host and device code is error prone, due to a weak connection between variables and
lack of inter-device compiler inference and error checking. These problems can be reduced via
generation of type-safe callee stubs and code generation scripts, but that is unnecessarily
complex, and probably contrary to C++’s design as a single-source programming model. There
is definite desire to improve the interface by making it strongly-typed, and that resulted in SYCL
which is much closer to C++ without adding any new language support. C++ is also already
moving towards fundamental support for parallelism and concurrency, though mostly from a
homogeneous non-numa architecture point of view.

As such SYCL was designed as a high-level C++ abstraction that still gives full access to the
lower-level OpenCL operations, without changing standard C++ with any language extensions.



The resulting design enables C++ source to contain functions that can be called on both host
and device and allows support for template algorithms. It leverages the well-defined C++
memory model, and the emerging parallelism and concurrency technical specifications. The
result is that SYCL provides a far better match for programmers transforming from Standard
C++ to heterogeneous programming.

Although SYCL has been designed as a high-level programming language from the point of
view of OpenCL/device developers, it is actually a perfect fit for composable template libraries.
The basic SYCL objects are templated by type, and all objects are reference counted - avoiding
excessive overhead with copy semantics, whilst not affecting move semantic behaviour.

In a typical SYCL program, host code and device code are in the same source (i.e.,
single-source approach). This is a novelty w.r.t other heterogeneous programming languages
such as OpenCL (where the device program is loaded from a runtime string).

This is common also in directive-based approaches (OpenMP >=4 when heterogeneous
directives were introduced, OpenACC), where the code is shared between host and
accelerators.

Data structures are created in the host code. Programming constructs (directives in
OpenMP/OpenACC or plain C++ objects in SYCL) define the boundary between the host and
device interfaces. Type-checking is supported at the boundary interface between the
host-created buffer, and the usage by the device kernel.

In SYCL, The build process enables both a cpu and a device compiler. The cpu compiler
generates the cpu object code, while the device compiler can generate SPIR or binary format
which can both be combined with the cpu object code at link-time to create an executable
object. The SYCL runtime chooses the best binary for the device at runtime.

As everything is still Standard C++, the host compiler path can act as an efficient fallback path,
when there is no device on the system. The triSYCL implementation is one such example
which supports only the library side without the device compiler.

The host code defaults to simplify object construction such as creating a default queue to
enqueue work on a default device/context, then wrap the data in a type-safe buffer. Developers
can provide more detailed information, such as defining classes for constructing a device,
building a custom-selector type to pick specific device features.

In the device code, it is designed to match the Parallelism and Concurrency TS in C++. There is
a well-defined scope and the ordering of parallel operations is traced through standard C++
memory model, to enable RAIl well-defined lifetime for buffers and access.

SYCL introduces the idea of Accessors to acquire access to a host buffer and the access falls
out of scope at the end of the queue entry. One can define for the duration of the access to be



read, write or both. The access also encodes asynchronous task dependencies based on read
and write access of a particular buffer at a particular time. By the time the host code finishes
that block, it has constructed all its tasks and dependencies and placed it on the underlying
OpenCL queue with all the event dependencies constructed effectively transparently.

The execution is in parallel through an SPMD ( Single Program Multiple Data ) execution model
using a parallel_for operation. This operation also prerequisites an iteration space which the
number of processing elements in a space of dimensionality from one to three. The parallel
function also includes the style of access, and passes a runnable function object or lambda that
represents the function to be executed at each point. The execution could also be SIMD
execution where the iteration space is defined as unary but SIMD vector operations could be
executed.

The use of lambdas which do not have well-defined names in C++ within source that is parsed
by different compilers (host and device) forces SYCL to require a name assigned to the lambda
by the user. That name is used for matching the lambda between the host and device compiler.
While this issue is common in both SYCL and HPX, and will be discussed in detail below with
some idea of how to resolve it in C++.

In summary, SYCL enables generic heterogeneous computing model with

e Command group functor which encapsulates a collection of memory and kernel
execution commands and is scheduled atomically

e queues class that waits for all commands to complete in its destructor and express
where computation occurs

e parallel_for, single_task, parallel_for_workgroup that launch computations operating on
one or multiple processing elements depending on whether we have a SIMD or SPMD
execution model. We could also have a hierarchical execution (the various hierarchical
parallelism concepts defined in the SYCL standard)

e accessor that defines the way and where we access data, which with the command
groups it forms a task dependency model
buffer/image for storing data
allocators for defining how host data is allocated.

The remainder of this paper will describe the motivation for some of these features, and how
SYCL has tried to solve them, with some suggestion and guidance on how they can be similarly
solved in C++.

3. Terminology

There has already been significant experience with many forms of compilation when device and
host compiler code needs to be mixed together. This section outlines some of these differences



based on our discussion in Section 3 of P0236R0 Khronos's OpenCL SYCL to support
Heterogeneous Devices for C++.

Host compiler / device compiler
Heterogeneous support today often requires a separate host and device compiler compiling
over either one combined source (single-source) or separate source.

Separate Source

This uses separate source for host code and device code. The host (CPU) code loads and compiles
kernels for specific devices, while setting arguments and dispatching the execution. One Example is
GLSL, a high-level shading language based on the syntax of the C programming language. Shader
languages are very widely used in graphics, where the separate source nature enable a separation
between the graphics engine and the specific shading, or lighting, of individual triangles being drawn
on screen. Another example is the OpenCL C and C++ kernel languages. This is the normal
OpenCL approach, where kernels are loaded and compiled separately from the host CPU source
code.

Kernel myKernel;
myKernel.load (“myKernel”);
myKernel.compile ()
myKernel .setArg (0, a);
float r = myKernel.run ()

void myKernel (fleat *arg) {
return arg * 456.7%;

}

Figure 1: OpenCL Kernel Language (top part is CPU code, and bottom part is device Kernel)

The advantage of this approach is that it is very explicit what is running where. Also, there is a
clear independence between source code, compiler, and runtimes for each device and the host
CPU. Also, this approach enables code to be generated at runtime. The main problem is that it
is still hard to compose across multiple devices and hard to move code around and define
where the interface is. For example, it is not possible to define the C++ Parallel STL in a kernel
language environment, as Parallel STL assumes a single source file with shared data types
between host and device.

C++ is a single source compilation model. That is all code targeted to either host, or whatever
special device (DSP, hardware transactional memory, accelerators) are combined in a single
source. It is unlikely that it will become separate source as that would require some significant
changes to C++ design. However, it is instructive to see what are the interesting problems that
can be presented when compiling single source.

Single source



Many of the most widely-used C++ programming models for accelerators (outside the graphics
domain) are single-source. One example is C++ AMP, which provides an easy way to write
programs that compile and execute on data-parallel hardware, such as graphics cards (GPUs). C++
AMP is a library implemented on DirectX 11 and an open specification from Microsoft for
implementing data parallelism directly in C++. CUDA is also a single-source C++ programming
model created by NVIDIA. The Thrust C++ library provides a modern single-source C++ style of
programming using CUDA. The OpenMP open-standard is also single-source, which uses pragmas
to support many form of accelerators with an HPC focus. OpenACC is similar to OpenMP and was
developed from a group of OpenMP members to bring to market an accelerator programming
standard earlier than OpenMP.

Such languages are easy to use, are composable and can be type-checked as everything is in one
source file. They enable offline compilation, so that code is shipped in binary format and checked at
compile time. This is the design chosen by SYCL, where a single source file can be compiled for
host CPU, with the kernels also being extracted from the source and compiled for one or more
OpenCL devices.

Single source is likely to be the future direction for the C++ Standard support for massive
parallelism, as it is consistent with the current design direction in C++, such as the Parallel STL.

Figure 2 below is a simplified example of what a single-source C++ parallelism model might look
like:

Vector<fleoat> a, b, r;
parallel for (a.range (), [&] (int id)
{

r: [ad] =3 [3d] -+ B [1d];

Fr

Figure 2. Example of SYCL single source

Single-compiler / multiple-compiler approach

Even when you have a single-source model for heterogeneous dispatch, that source is still
compiled separately for the CPU and and the heterogeneous devices. This is done either via a
single-compiler approach where a single compiler compiles both the CPU code and the
heterogeneous device code or a multiple-compiler approach where separate compilers are used
to compile the CPU code and the heterogeneous device code.

C++ currently imposes a singler-compiler compilation model, however looking forward towards
heterogeneous dispatch there is a great deal of motivation that suggests it should move towards
a multiple-compiler compilation model. Here we present the motivations behind a
multiple-compiler compilation model in C++ and in later section we look at some of the issues
that would arise as a result and how they could be overcome.



A single-compiler compilation model for heterogeneous dispatch is only possible in the
cases where either in the rare situation where the entire ecosystem is controlled such as
the case with CUDA or all devices within the ecosystem can be managed via a common
standard such as SYCL.

Hardware vendors will continue to independently develop new devices that will want to
have adopted into existing systems and tool chains at a later stage. By supporting a
multiple-compiler compilation model, those hardware vendors can simply provide a new
compiler for their new architecture rather than having to either integrate their compiler
into an existing compiler and tool chain or add the addition existing CPU options,
optimizations or builtins from tool chains they are seeking to be adopted by.

Systems vendors will want to compose systems that leverage these new architectures.
By supporting a multiple-compiler compilation model, those system manufacturers would
be able to compose systems with devices from different vendors and be able to
compose a tool chain with the individual compilers for each device rather than having to
implement an entirely new compiler and tool chain in order support their system.

Library and applications developers will want to be able to continue using their existing
tool chains and compilers when adapting to addition of new architectures. By supporting
a multiple-compiler compilation model, those developers will be able to continue using
the existing tool chain with only the addition of the additional compiler rather than
potentially having to adapt to an entirely new tool chain.

As CPU architectures and heterogeneous architectures have such different requirements
in terms of execution and memory models they will have very different back-ends,
optimization passes and potentially even front-end semantics depending on the C++ std
library implementation details. This means that in the majority of cases the source code
that is compiled by a single compiler is actually still passed through two completely
different compiler invocations, and is in fact only giving the illusion of a single-compiler
compilation model by hiding the compiler inter-op in the compiler driver.

In the more common case, where you have separate compilers for host and device, it is more
amenable to innovation and usage of Open Source contributions such as clang, and gcc, which
can supply either the host or the device part.

It is also worth mentioning that, when dealing with heterogeneous platforms, it is not always the
same vendor that controls the entire toolchain or environment. It is common to have multiple
vendors collaborating with their toolchains in the system, and they are often delivered
independently and have to be composed together later in the system integration phase.

This makes unfeasible the possibility of sharing a common compiler driver written in the same
toolchain (e.g, a common clang compiler driver) since the system integrator does not control the
different components.



4. Lambdas and Reflection

These four sections are transported verbatim from P0362R0 for EWG consideration, but is left in
tact here for completeness.
Background

Lambda functions have become an important component of parallel programming approaches,
since they serve as a mechanism for both anonymous functors, and convenient mechanism for
kernel parallel dispatch.

For single-source programming models it has become the defacto standard to represent device
functions that are to be offloaded to a heterogeneous device as a lambda or functor object,
generally having the capture variables or fields respectively be the the arguments to the device
function.

In the case where the source is shared across two independent C++ compilers; this introduces
the requirement for lambdas to have a common representation across different C++ compilers
in order to support heterogeneous dispatch.

These requirements do not extend to the case where the source is compiled twice by the same
C++ compiler (such as CUDA or OpenMP) as most of the issues encountered can be resolved
internally within the compiler.

The heterogeneous dispatch in the case of multiple-compiler solutions also involves a step
where the lambda will be dispatched by a heterogeneous runtime library on a device. In order to
do that it will also need a unique identifier for the lambda.

Naming

The first issue is that the current standard does not require lambdas to have a common name
mangling, which means that two C++ compilers are free to mangle the lambda differently. This
can cause a problem for heterogeneous dispatch because there is no way for two compilers to
make the link between a lambda which the host compiler and the device compiler sees, for it to
be able to be dispatched on device side.

The current solution for this problem in SYCL is to have a template parameter attached to all
heterogeneous dispatch apis provided which specifies a common name for the lambda among
the different C++ compilers that are compiling it.



cgh.parallel for<class device func>(ndRange, [=] (nd item<2>
itemID) {
/* device function */

P

There are a few potential solutions to this:

1. One option would be to force a common name mangling of lambdas in the ABI, however
this is a drastic change to the standard.

2. Another option is to specify the lambda name using a generalized attribute, however,
this still requires the user to specify the name of the lambda.

3. Another option is to extend static reflection (P0194R0) to (according to the current
proposal) require the the Meta-Class object in the case of lambdas to always derive from
Meta-Named and have a standard naming that can be returned from get_name().

Option 3 looks like the best solution as firstly it is the least invasive as it is solely a library feature
allowing the language details to be implementation defined, without any ABI changes. It
removes the requirement for a user specified attribute or name with an extension to an existing
proposal.

Moreover, options 1 and 2 both provide the name of the lambda as information to the compiler,
either via the ABI or are part of the lambdas type. This information, however, is not enough as it
only addresses the issue between the mentioned compilers. There is still the problem of
dispatching the lambda via some implementation specific run-time api, which still needs a form
of static reflection in order to retrieve the name of the lambda.

Data Member Representation

The second issue is that the current standard does not specify any guarantees for the ordering
of the data member of lambdas. More specifically variables and references captured within a
lambda closure can be declared in the resulting functor object in any order and can be of any
access modifier. This means that the type of a lambda closure is not required to be a standard
layout type.

This can cause a problem for heterogeneous dispatch because there is no guarantee that two
distinct C++ compilers will have the same ordering of data members within a lambda, making it
impossible to reply on a mapping of the lambda data members as the host CPU compiler see
them and as the compiler of the heterogeneous device see them.

A solution to this would be to standardise the way in which variables and references captured
within a lambda closure are declared in the resulting functor object. One way in which this could
be done is by adding the following rules to lambda captures:


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0194r0.pdf

e All variables and references captured within a lambda closure are declared in the functor
object in the order in which they are captured, with explicitly captures first then implicit
captures.

e All variables and references captured within a lambda closure are declared in the functor
object with the same access modifiers, whether that be private, protected or public.

e The functor object that is declared as a result of the lambda closure must be a standard
layout type.

Iterating Over Data Members

The third issue is that as a lambda that is being used to represent a device function being
dispatched to a heterogeneous device can have any arbitrary number of captures, it is
necessary to identify the arguments of the device function in a generic way.

The ability to do this could be facilitated by way of static reflection (PO194R0), which is already
making good progress towards this. There are a couple of points of the current proposal that are
very useful for run-times using lambdas for heterogeneous dispatch.

The static reflection defined in the current proposal could be very useful for implementing such a
run-time when iterating over the data members of a lambda in order to marshal data from the
host to a device.

The current proposal includes the ability to retrieve private data members as well as a public
data members using the get_all_data_members() function of the Meta-Class, this is important
as lambda captures are declared as private data members.

The proposal also specifies that the order of the Meta-ObjectSequence returned by
get_all_data_members() will follow the same ordering as how the data members are laid out in
the translation unit, this is also important, however this is affected by the issue raised in the
previous section regarding ordering of captured variables within a lambda closure.

In heterogeneous architectures it is very common to have not only host and device compiler, but
multiple device compilers matching the different devices on a system. Requiring only one
compiler per system is limiting significantly the number of different devices in the system, which
is not reflecting what the current systems require. It is common practise to require the host code,
which is the CPU code, by a different device’s compiler, however, that removes the ability to be
able to compile the CPU code with the best CPU compiler for that architecture.

It is interest that HPX also sees the same issues when it tries to dispatch lambdas distributed
computing. They also solve it using a user-supplied named lambda and has commented that
introspection of lambdas with captures in the static reflection proposal is extremely important.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0194r0.pdf

5. Conclusion

This paper aims to begin the conversation of the specific features we need to support for
massive parallel dispatch for heterogeneous devices, integrated with the host. This paper
describes a single-source, multiple compiler model but suggests adaptation for lambdas, while a
separate paper aimed at SG14/SG1 discusses executors, task blocks, simd, and possible
address spacing considerations.
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