
Accessors
—

a C++ standard library class to qualify data accesses

Ronan Keryell (Xilinx) Joël Falcou (NumScale)

May 29, 2016

Document P0367R0
Date 2016-05-29

Project ISO/IEC JTC1 SC22 WG21 Programming Language C++
Audience SG14, SG1, LEWG
Authors Ronan Keryell (Xilinx), Joël Falcou (NumScale)
E-mails ronan.keryell at xilinx dot com

joel.falcou at numscale dot com
Reply to ronan.keryell at xilinx dot com

Abstract

Accessing data is the most important aspect when it comes to high-performance computing
or power efficiency in embedded computing. Furthermore, generalizing C++ to targets such
as GPU or FPGA requires even finer control in the programmer hands.

We propose to abstract data accesses through an accessor class to give control to the
programmer on how fine grain access is done, such as caching, memory burst or remote access
in heterogeneous computing.

The std::accessor<> class is a proxy wrapper that behaves like the wrapped object but
adds access properties to it or change the access behaviour.

For example if you have a slow I/O or a memory access (a special case of slow I/O
nowadays...) but you know that pretty often the result is 42 for obvious reasons, you may
rewrite your code

auto result = f(some_io ());

to

auto result = f(make_accessor <likely > { some_io (), 42 });

and the compiler can decide for example to clone the execution of f to compute ahead f(42)
or even to constexpr-evaluate it and the result is only committed when some_io() comes
back and the value is verified as predicted. If not, the normal evaluation of f() goes on.

1

Contents
1 Motivation 2

2 Related work 3

3 Accessor 4
3.1 Non unified memory . 4
3.2 Read/write qualifiers . 5
3.3 Non temporal access . 6
3.4 Aliasing . 6
3.5 Sequential access . 6
3.6 Prefetching . 7
3.7 Burst mode . 7
3.8 Pipelined access . 7
3.9 DMA . 8
3.10 Bus type . 8
3.11 Access width . 9
3.12 Address mode . 9
3.13 Translation . 9
3.14 Modulo addressing . 9
3.15 Address bit setting . 9
3.16 Transactional memory . 10
3.17 Prediction . 10
3.18 Generic proxy . 10

4 Type traits 11

5 Implicit accessor 11

6 Implementation ideas 12

7 Issues 12

8 Conclusion 12

1 Motivation
Demand for high-performance and power efficiency makes architectural considerations more and
more important when programming, specially with the generalization of distributed computing
and heterogeneous computing involving accelerators, DSP, GPU, FPGA, network accelerators,
etc.

Unfortunately, as for a sequential program running on a CPU, there is no performance porta-
bility when it is about reaching the maximum performance and power efficiency on a given ar-
chitecture. Some execution parameters may have to be tweaked and/or the architecture of the
software has to be deeply changed accordingly. Since there are more parameters under control in
an heterogeneous platform compared to a CPU, the exploration space is quite wider. Dealing with
this in an automatic way is an intractable issue in the general case but at least we should have
some ways to express some of these details at the C++ level to reach maximum performance and
power efficiency.

For example, currently there is no way to specify how the data are accessed and if we consider
that now most of the energy consumption is spent in data transfer, specially with external memory,
this is something to address.

2

Keeping data on a first-level cache in CPU is crucial and it is important to express which data
will benefit or not from being in the cache. Since cache memories are very small and expensive,
specifying that some data do not take advantage of the cache leaves more room for data in the
critical path.

In the following we develop the concept of accessor represented as a plain C++ class to express
how data are accessed in a C++ program.

An accessor is a proxy object that behaves like the object it represents but with some ways to
change the behaviour when read or written.

Most of the behaviour could be done by language extensions or #pragma, but the advantage
of having it as a class is that it can often be implemented in user-mode C++ for simplicity,
portability or debug, and also implemented by a compiler in a target-specific optimized way on
some architectures.

Having a plain object to control accesses provides handy RAII framework to hide actions in the
accessor constructor and destructor, such as setting up the communication framework or switching
on and off the power of the system that gives access to the object.

Having access properties encoded in the type itself allows propagation though generic templated
function calls or lambda captures and allows code specialization with metaprogramming according
to some access properties.

2 Related work
In current C++ standard and proposals or other libraries, some architectural aspects can already
or will be addressed:

thread can be used to execute some code in parallel on multiple execution units;

allocator controls the way allocation happens and how pointers behave, and thus hide some
hardware detail for data access;

constructors and destructors can hide some architectural details and semantics;

operator overloading is useful to hide some hardware operations

auto operator overloading would make cleaner implementation of proxy to some hard-
ware details and cleaning up expression templates;

operator dot overloading [SR16] allows changing the behaviour and some extensions to
generate function objects [GK15] allow interesting use case to change the object be-
haviour;

fixed-point type proposals are useful to have better performance on DSP and FPGA;

the concept of view has some similarities but is more focused on some kind of objects, such as
array_view for arrays, string_view for strings, or span to view a sequence as a range:

array_ref [ELT+16] is a proxy object to view some array-like objects in various ways;

SYCL is a C++ OpenCL standard from Khronos to execute some functors on some accelerators
with possibly different address spaces, with the concept of accessors representing remote
access to multidimensional arrays [WRRR16];

C++AMP and hcc [SSC+15] are C++ extension to execute some functors on some accelerators
with possibly different address spaces, with the concept of array_view representing remote
access to multidimensional arrays;

Boost.SIMD [SIM16] provides non-temporal iterators and ranges to work on vectors;

3

ISO/IEC TR 18037 in the C world, “Information Technology — Programming languages – C
– Extensions to support embedded processors” (ISO/IEC JTC1 SC22 WG14 N1169, 2006-
04-04 http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf) introduces con-
cepts such as the named address spaces to represent special kinds of memories, that went
recycled into CUDA and OpenCL address spaces, or named registers and special I/O.

The concept of accessor discussed here is more focused on the action of reading or writing than
on the kind of object.

3 Accessor
An std::accessor<T, access_kind...> is a variadic templated class that act as a proxy object to
qualify how an original T object is accessed.

Since there are a lot of different ways to access an object, we prefer to have the accessor to
be parametrized by the kind of accessor instead of having completely different explicit accessor
classes:

auto io = get_some_memory_mapped_io ();
std::accessor <write > use_it { io };
// Now we are sure this is a write -only usage
some_random_code(use_it);

with the type of the data accessed actually inferred from the constructor.
Accessors actually compose to define more complex access modes from basic ones, such as:

unsigned char buffer[N];
// Combine a write -only accessor with a modulo accessor to have a
// write -only circular buffer
std::accessor <std::accessor <modulo >, write > wcb { buffer };
generate_some_data(wcb);

The order of composition matters to match the requested semantics.
Of course the syntax becomes cumbersome and this is why the accessor is actually a variadic

templated class so the previous example can be simplified as

unsigned char buffer[N];
// Combine a write -only accessor with a modulo accessor to have a
// write -only circular buffer
std::accessor <write , modulo > wcb { buffer };
generate_some_data(wcb);

with the accessor types combined from left to write in the order mathematical function composi-
tion: make a write accessor on top of (from) a modulo accessor. If some constructor arguments
are required by the accessor there are matched in the reverse order.

A variadic templated factory method is also provided and usable as:

double a[10000];
auto p = std:: make_accessor <prefetch <16>> { a };
// Use p as a but prefetch from memory 16 elements ahead
f(p);

3.1 Non unified memory
The current C++ memory model assumes more or less that the memory address space is uniform.
Unfortunately, for HPC class machines from the Top 500 or for embedded systems, this simple
addressing scheme does not hold and there are for example some private memory attached to each
processor or device that cannot be addressed directly by another processor or device.

4

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf

The motivation for this accessor proposal actually comes from OpenCL SYCL C++ where
some functors are remotely executed but need to interact with a global memory. This is also the
concept behind PGAS (Partitioned Global Address Space) languages or libraries, such as Coarray
C++ or UPC++, where the memory is physically distributed but can be remotely accessed with
some explicit language or library support instead of transparent virtual shared memory.

The use of a (SYCL) accessor can be seen on this SYCL C++ example:

// Create a 1D buffer of N double
cl::sycl::buffer <double , 1> b { N };
// [...]
// Launch on default accelerator:
cl::sycl::queue {}. submit ([&](handler &cgh) {

/* Get an accessor to write the data remotely from inside lambda
which is off -loaded to the accelerator */

auto acc = b.get_access <access ::write >(cgh);
// A DIY parallel equivalent of std::iota as a kernel named "init"
cgh.parallel_for <class init >(N, [=] (auto index) {

acc[index] = index;
});

});

could be generalized in a framework returning a remote accessor to allow remote access as:

std::array <double , N> local;
accessor <remote , write , std::array <double , N>> remote =

get_some_runtime_remote(local);

std::copy(std::begin(local), std::end(local), std::begin(remote));

Typical environments usable with this could be SHMEM, Portal4, SYCL, Coarray C++,
RDMA, iWARP, MPI...

Actually the real power from remote accessors would come from the combination with the
array_ref [ELT+16] to have a simple implementation of the higher-level accessors found in SYCL
or Coarray C++, or implement some for the other environments.

3.2 Read/write qualifiers
In C++ there is the const qualifier to specify read-only but there is no way to specify other access
modes that normally do not change the semantics but are useful to increase performance or lower
power consumption.

Here is a list of accessor types:

write to access to a write-only data. This avoids for example to load or prefetch the cache from
memory before writing;

read to prevent writing back data;

read_write normal access by symmetry;

discard_read to read data if they are written first and do not read the initial value at accessor
creation. A typical use case is a data locally generated that can be read back locally;

discard_write to write data to be locally read but won’t be written back at accessor destruction;

noaccess by symmetry, typically to detect inappropriate behaviours in a program.

5

3.3 Non temporal access
A non_temporal accessor allows to access data that won’t be accessed again and typically will not
for example use a cache. This diminish cache transactions and leave the cache for some more
useful usage.

For example when generating a huge amount of data to an array, everything else would be
evicted from the cache without any chance to read the array back from the cache anyway.

A use case:

// An array of 1 TB
double a[2<<37];
auto ac = make_accessor <non_temporal ,write >(a);
// Initialize a starting from the end with increasing
// integer starting at 42
std::iota(std::par_vec , ac.rbegin (), ac.rend(), 42);

3.4 Aliasing
Aliasing between different data structures may prevent the compiler from doing aggressive opti-
mizations. Some proposals exist using generalize attributes [FTC+14] but it can also be done with
accessors such as:

double a[N], b[N];
// Dummy class declarations to be used as alias set tags
class ta;
class tb;

auto ca = make_accessor <alias_tag <ta >>(build_complex_data_structure(a));
auto cb = make_accessor <alias_tag <tb >>(build_complex_data_structure(b));
auto oa = make_accessor <alias_tag <ta >>(other_complex_data_structure(a));
auto ob = make_accessor <alias_tag <tb >>(other_complex_data_structure(b));
// No aliasing
correlation(ca , cb);
correlation(oa , ob);
// Aliasing
correlation(ca , oa);
correlation(cb , ob);

Inside correlation() the compiler can use the aliasing information to optimize more or less
the code, as with generalized attributes from [FTC+14], but with a type as a tag.

But since it is an accessor class, the programmer can query the accessor aliasing status with
a type trait (§ 4) to know if there are aliasing between accessors and if so statically dispatch
completely different algorithms.

3.5 Sequential access
In some case the programmer knows that accesses to an array are strictly sequential but the
compiler cannot prove it. By explicitly specifying it, a compiler can generate vector memory
access or do some parallel loop nest pipelining where the memory access is completely replaced
for example by a hardware FIFO between execution units, specially in the case of low level targets
(FPGA).

In the program

{
std::accessor <accessor :: sequential ,

accessor :: discard_read ,
accessor :: discard_write > a { some_array };

6

for (int i; i = 0; i != N; ++i)
a[i] = i;

for (int i; i = 0; i != N; ++i)
b[i] = a[i]*2;

}

the compiler could decide to fuse the 2 loops or to generate 2 Kahn’s processes, 1 producer and 1
consumer, with only an efficient hardware FIFO in between and eluding the memory transfer on
a[i].

3.6 Prefetching
Latency is often a performance killer and if we know in advance that we will read some array
elements, we could prefetch it. Note that prefetching is actually independent from caching, so it
can be combined with non temporal access.

int a[N];
// Instruct the memory prefetcher to look 16 elements ahead
std::accessor <prefetch <16>> a_p { a };
std::fill(std::begin(a_p), std::end(a_p), 0);

3.7 Burst mode
Most of the memory interfaces work better when memory transfers are made with a coarse gran-
ularity. It can be specified with this accessor.

Note that since burst mode uses bulk transfer mode, it is not interesting for example when
transferring small data randomly placed. In this case a burst-size of 1 with a non temporal accessor
can be used.

int a[N*20];
// Instruct the memory prefetcher to use a burst mode of 20 elements
std::accessor <burst <20>> a_p { a };

// To generate random integers between 0 and N - 1
std:: default_random_engine r;
std:: uniform_int_distribution <int > d { 0, N - 1 };
for (int i = 0; i != N; ++i) {

// Randomly write blocks of 20 elements
p = std::begin(a_p) + 20*d(r);
std::fill(p, p + 20, 0);

}

3.8 Pipelined access
Software loop pipelining is a classical loop transformation to reduce intra-iteration dependency
which has tremendous effect on low-end processors (micro-controller with no cache) or specialized
architectures (FPGA), by rewriting

for (int i = 0; i < N; ++i)
a[i] = f(b[i]);

(assuming N ≥ 2) to:

// Prelude
auto r = b[0];
auto w = f(r);
r = b[1];

7

// Pipelined loop
for (int i = 0; i < N - 2; ++i) {

a[i] = w;
w = f(r); // For i + 1
r = b[i + 2];

}
// Postlude
a[N - 2] = w;
a[N - 1] = f(r);

A compiler is expected to do this kind of transformations automatically but some times cannot
figure out automatically if it is legal or what is the actual benefit, for example when iterating on
some complex iterators. By using an accessor<pipelinable> the compiler can generate a pipelined
loop:

auto f = [](auto input , auto output) {
std:: transform(std:: cbegin(input), std::cend(input),

std:: begin(output), func);
};

int in[N], out[N];

// Call a pipelined implementation of f without requiring
// interprocedural analysis of func
f(std:: make_accessor <pipelinable > { in },

std:: make_accessor <pipelinable > { out });

3.9 DMA
To take advantage from DMA to transfer data, the transfer can be encoded as a DMA operation
with a DMA accessor.

int far_far_away[N];
{

int near_and_fast[N];
auto make_accessor <dma > { far_far_away , near_and_fast };
std:: generate(p, p + 20, 0);

}

The read/write accessor mode can be used to remove useless copy in the constructor or the
destructor.

More complex data transfers may be defined using static DMA descriptors (can be synthesized
in hardware on FPGA) or dynamic DMA descriptors given in the accessor constructor.

3.10 Bus type
Some systems allow different types of buses an a variable may be addressed through these different
buses with an accessor specifying a bus identifier. The concept is standard but the bus identifiers,
besides the default one, are implementation specific:

char a;
float b;
std::accessor <bus <axi4 >> a_a { a };
std::accessor <bus <axi4 >> b_a { b };
std::accessor <bus <main > a_m { a };
std::accessor <bus <main > b_m { b };
// Use different buses in parallel to improve bandwidth
auto sum = a_a + b_m;

8

auto prod = a_m + b_a;

The synchronization constraints between the various buses are implementation dependent.

3.11 Access width
Embedded systems allow to specify the size of the data-packets transferred on a bus. This can be
specified with:

double d;
// Transfer 8-bit at a time
std::accessor <bit_width <8>> d_b { d };
auto a = d_b;

3.12 Address mode
Some architectures allow different addressing modes with different trade-off, such as PC-relative,
based on a base pointer, near to some page, etc. To compile efficiently with this mode, a specific
accessor is provided.

The available modes are implementation dependent, besides the std::accessor<address_mode<
normal>>.

3.13 Translation
In embedded systems, it is common to have some level of shared memory but mapped physically
at different addresses. If there is no virtual memory in use in some part of a system, the address
in the different point-of-views appear as translated by an offset.

unsigned char frame_buffer[N];
size_t offset = &display - frame_buffer;
// The screen memory on the display controller
std::accessor <translate > b { frame_buffer , offset };

3.14 Modulo addressing
Implementing some circular buffers may require some kind of modulo addressing and some pro-
cessors have this addressing mode. Since it is impossible to detect automatically this feature in
the compiler in the general case, it should be expressed with an accessor:

unsigned char buffer[N];
// b is a kind of infinite array , but with only buffer storage repeated
std::accessor <modulo > b { buffer };

A specialized version of [DO16] could use this accessor.

3.15 Address bit setting
Some architectures encode in the address bus some semantics which is not used as the part of the
address itself, such as supervisor mode, non executable mode, etc.

A bit-setting accessor allows to change the address bit accordingly during read or write oper-
ations:

int a[N];
a[0] = 2;
// On the target architecture , the address space is duplicated on the
// half upper 32KB space for a cacheless access

9

std::accessor <bit_set <or <(1 << 15) >>> cacheless_access { a };
// as a[123] but do not use the cache
cacheless_access [123] = 4;

3.16 Transactional memory
A transactional-memory accessor start a transaction at the accessor creation up to its destruction,
with some transaction behaviour for the threads using this accessor. In case of write data-race,
only one of the conflicting threads are not rolled back up to the construction of the accessor.

For example the 2 following functions

int shared_data[N];

void f() {
std::accessor <transaction > a { shared_data };
foo(a);

}

void g() {
std::accessor <transaction > b { shared_data };
bar(b);

}

may be executed from 2 different threads and will use a transactional memory behaviour if avail-
able, or otherwise the implementation will fallback on a lock-based solution.

3.17 Prediction
Sometime the programmer knows some probabilities about the distribution of values and this can
be useful for probabilistic optimization. For example in

int v = some_io ();
// Execute f() ahead knowing that most of the time v is 0
std::accessor <likely > prediction { v, 0 };
auto result = f(prediction);

the compiler can decide for example to clone the execution of f with some predication to remove
side effects while doing a speculative execution. The actual result will be really committed only
when v come out from the network and is compared to the predicted value.

We can have a PGO (Profile-Guided Optimization) version of it to instruct the compiler to
instrument the code to do some statistical analysis of the most common value:

// Execute f() ahead after some PGO analysis to figure out common values
auto result = f(make_accessor <pgo_likely > { some_io () });

We can allow several likely values too.

3.18 Generic proxy
A proxy accessor delegates all the read and write operations to some user-provided functors.

void instrument(int v[]) {
std::accessor <proxy > p { v, read_functor , write_functor };
// Call f on p instead of v to intercept the read and write
f(p);

}

It is useful for example for:

10

• virtualizing some non existant memory or hardware;

• implementing transactional memory in user mode;

• testing with some non existing software part by interacting with a mock-up hidden behind
an accessor;

• override the memory operation to do fault injection for fault-tolerance evaluation;

• security testing with fuzzing of inputs.

4 Type traits
Having classes to qualify accesses makes possible some metaprogramming according to these type
properties.

For this there are some type traits to introspect accessors at compile time, in the form of
std::is_accessor<property_list >(acc) or std::get_accessor<property_list >(acc).

For example it is possible to test if 2 accessor types are aliasing or not:

auto correlation = [](auto data1 , auto data2) {
if constexpr (std:: is_accessor_v <aliasing_with >(data1 , data2))

slow_conservative_correlation(data1 , data2);
else

crazy_aggressive_correlation(data1 , data2);
};

to go back to the example from § 3.4.

5 Implicit accessor
Having to use explicit accessor objects may be painfully intrusive and it would be nice to have
something lighter. Of course, since omnipotent abstract interpretation of a program is impossible,
some kind of program transformation is required by the programmer to express properties of
memory access.

We can use language extensions, #pragma or generalized attributes. Language extensions are
bad for portability and acceptance. #pragma do not compose well with meta-programming. So we
focus here on decorating objects with accessors.

// An array of 1 TB
double a[2<<37] [[std::accessor <non_temporal ,sequential >]];

// An implicit accessor is wrapped around all uses of a
std::iota(a.begin(), a.end(), 0);

But also on any scope, such as class, block, namespace... as for example to add a behaviour of
a transactional memory on all a class:

template <typename T>
class message_queue [[std::accessor <transaction >]] {

T read() {...}

void write(T &&t) {...}
}

11

6 Implementation ideas
The implementation basics for the proxy objects are:

• for fundamental types, have an implicit conversion operator to the reference to the funda-
mental types so the accessor can behave like the fundamental type;

• for object types, the proxy would publicly inherit from the type to forward all member access
to it;

• the concept of accessor can just inherits from a reference accessor class implementing the
proxy behaviour according to the basic type (fundamental, array, class, pointer);

• each kind of accessor inherits from another accessor class and adds its own properties to it
as member types and optional member variables and methods, so at the end a full accessor
is an aggregation as an inheritance list;

• some accessors such as the generic proxy accessor may require real compiler support.

7 Issues
Having some objects appearing at other addresses may put some restriction on the type (such as
“trivially copyable”, “standard layout”...).

8 Conclusion
Since accessing data is a real issue today for performance and power efficiency reasons, we introduce
the concept of accessor to give the programmer some ways to optimize data accesses or extend data
accesses beyond Von Neuman’s architecture, the natural scope of C/C++, involving distributed
memory and heterogeneous architectures.

We propose to control various aspects such as simple as read/write access control down to
hardware bus selection, cache control, pipelining, etc.

Instead of extending the language, we propose to encapsulate accesses in normal STL classes,
the std::accessor, to wrap up objects and add properties to their accesses. This class is templated
to encode various properties that compose nicely.

Having this information available in the type system allows introspection and metaprogram-
ming at compile time with specialization according to the types of possible data accesses.

Combined with concepts such as executors and ranges, it allows building very-high level parallel
distributed applications with very extreme low-level bare-metal optimizations.

Acknowledgements
We want to thank all the people from the Khronos OpenCL SYCL committee for the fruitful
discussions leading to this generalization of the concept of accessor.

Acknowledgments go to Xilinx for supporting this work and also to colleagues for their fruitful
discussions on advanced C++ for FPGA: specially Ralph Wittig, Jeff Fifield and Sam Bayliss.

Thanks to Lee Howes for his PhD [How10] research on some concepts close to accessors and
for the discussions on SYCL accessors.

Thanks to Michael Wong for helping bootstrapping this proposal in the C++ SG14 committee.
The PIPS team from MINES ParisTech and the Par4All team at SILKAN are thanked for the

feedback on compilers using polyhedral techniques for automatic parallelization got heterogeneous
computing and how we could have “array regions” (polyhedral approximations of accesses) in
accessors, even it did not get trough this proposal yet.

Thanks to Albert Cohen for the discussion on how we could have the PENCIL IR [BCG+13]
into C++, even it did not get trough this proposal yet.

12

References
[BCG+13] Riyadh Baghdadi, Albert Cohen, Serge Guelton, Sven Verdoolaege, Jun Inoue, Tobias

Grosser, Georgia Kouveli, Alexey Kravets, Anton Lokhmotov, Cedric Nugteren, Fraser
Waters, and Alastair F. Donaldson. PENCIL: Towards a platform-neutral compute
intermediate language for dsls. Technical report, February 2013. http://arxiv.org/
abs/1302.558.

[DO16] Guy Davidson and Arthur O’Dwyer. A proposal to add a ring span to the standard
library. Technical Report P0059R1, February 2016. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/p0059r1.pdf.

[ELT+16] H. Carter Edwards, Bryce Lelbach, Christian Trott, Juan Alday, Jesse Perla, Mauro
Bianco, Robin Maffeo, and Ben Sander. Polymorphic multidimensional array refer-
ence. Technical Report P0009R1, February 2016. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0009r1.html.

[FTC+14] Hal Finkel, Hubert Tong, Chandler Carruth, Clark Nelson, Daveed Vandevoode,
and Michael Wong. Towards restrict-like aliasing semantics for c++. Technical Re-
port N3988, May 2014. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n3988.pdf.

[GK15] Mathias Gaunard and Dietmar Kühl. Function object-based overloading of operator
dot. Technical Report P0060R0, September 2015. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/p0060r0.html.

[How10] Lee William Howes. Indexed dependence metadata and its applications in software
performance optimisation. PhD thesis, Imperial College London, 2010. http://www.
leehowes.com/files/HowesThesis2010.pdf.

[SIM16] Boost.SIMD: Portable SIMD computation library, 2016. https://github.com/
NumScale/boost.simd.

[SR16] Bjarne Stroustrup and Gabriel Dos Reis. Operator dot wording. Technical Re-
port P00252R0, February 2016. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2016/p0252r0.pdf.

[SSC+15] Ben Sander, Greg Stoner, Siu-Chi Chan, Wen-Heng (Jack) Chung, and Robin Maf-
feo. A C++ compiler for heterogeneous computing. Technical Report P0069R0,
September 2015. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/
p0069r0.pdf.

[WRRR16] Michael Wong, Andrew Richards, Maria Rovatsou, and Ruyman Reyes. Khronos’s
OpenCL SYCL to support heterogeneous devices for C++. Technical Report
P00236R0, February 2016. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2016/p0236r0.pdf.

13

http://arxiv.org/abs/1302.558
http://arxiv.org/abs/1302.558
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0059r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0059r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0009r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0009r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3988.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3988.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0060r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0060r0.html
http://www.leehowes.com/files/HowesThesis2010.pdf
http://www.leehowes.com/files/HowesThesis2010.pdf
https://github.com/NumScale/boost.simd
https://github.com/NumScale/boost.simd
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0069r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0069r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf

	Motivation
	Related work
	Accessor
	Non unified memory
	Read/write qualifiers
	Non temporal access
	Aliasing
	Sequential access
	Prefetching
	Burst mode
	Pipelined access
	DMA
	Bus type
	Access width
	Address mode
	Translation
	Modulo addressing
	Address bit setting
	Transactional memory
	Prediction
	Generic proxy

	Type traits
	Implicit accessor
	Implementation ideas
	Issues
	Conclusion

