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1 Introduction

This paper accompanies the P0194R3 paper which we want to keep brief, technical and to the
point and which will eventually result in the final wording to be included into the standard, if
this proposal is accepted. There is also a short introductory paper – P0578 which gives a concise
introduction and overview of our reflection proposal.

We are writing this paper with several goals in mind:

• To define and explain the reflection-related terminology.

• To keep a written record of the rationale behind the design of the proposed static reflection
facility.

• To keep the answers to the frequently asked questions about the decisions we’ve made in this
proposal in one place so that we can avoid having to write them over and over from scratch
in various discussions1.

• To enumerate and describe the use cases for the various features which we included in the
proposal.

• To provide concrete examples of usage.

• To discuss the possibilities of the evolution of reflection in the future.

1Also to help us remember what the answers were.
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The text of this paper includes several revised, updated and extended parts from the previous
papers: N3996, N4111, N4451, N4452 and previous revisions of P0385.

There is also an experimental implementation of the P0194R2 proposal described in greater detail
in section 8 and the Mirror reflection library built on top of the proposed static reflection facility
described in section 9.

1.1 Terminology

In order to avoid confusion about terminology, this section provides definitions for several important
terms used throughout the text of the paper and explains what we mean when using them in the
context of this paper.

1.1.1 Base-level, meta-level

When speaking generally, the meta-level is some higher level of abstraction conceptually describing
a lower, base-level which is the primary subject of our endeavors.

In the context of this paper the base-level is the structure of a C++ program. The meta-level is
an abstraction partially describing that structure, mainly the declarations of the program.

1.1.2 Metadata

Metadata is generally a piece of data conceptually describing some other, primary data.

In the context of this paper, metadata is data providing information about the base-level structure
of a program.

Static metadata is metadata which can be manipulated or reasoned about at compile-time by the
compiler.

The metadata itself has its own structure. For example metadata describing the base-level decla-
ration of a class from a C++ program includes;

• the name of the class,

• its scope,

• list of its base classes,

• list of data members,

• list of nested types like type aliases, classes and enumerations,

• the class key specifier, the access specifier,

• source location information,

• etc.

4



P0385R2 – Static reflection
Rationale, design and evolution.

1.1.3 Metaprogramming

Metaprogramming is a kind of programming with the ability to treat and manipulate other programs
as data, so both the input and the output of a metaprogram is usually a program. The language in
which metaprograms are written is called the metalanguage and it can be a different or the same
language as the one used to write the primary program.

C++ metaprogramming can be done both in an external language2, in a C++ compiler plug-in, or
in C++ itself.

In C++ metaprogramming usually takes the form of an external source code generator3, or the
form of preprocessor, template or constexpr metaprogramming.

With template metaprogramming we use C++’s type system as a standalone functional program-
ming language “interpreted” by a C++ compiler, with “variables” being represented by types (or
compile-time constants), “data structures” by instantiations of templates, “subroutines” by class
templates or template aliases, and algorithms or “programs” by compositions of the above.

Unless stated otherwise when we say “metaprogramming” in the following text, we mean template
metaprogramming4.

1.1.4 Reflection

In the context of computer science, the term reflection refers to the ability of a program to examine
and possibly modify its own structure and/or behavior.

When combined with metaprogramming, this can include modification of the existing or the defi-
nition of new data structures, doing changes to algorithms or changing the way a program code is
interpreted5.

For the purpose of this paper – reflection is the process of obtaining metadata.

In the future the meaning can be expanded to include modification of the program in ways exceeding
the capabilities of current template metaprogramming6.

1.1.5 First-class object, second-class object

First-class objects are also known as first-class citizens, types, entities or values. In the context of
programming language design they describe an entity that satisfies the following:

• Can be stored in a named variable or a data structure.

• Can be passed as an argument to a subroutine.

• Can be returned as a result of a subroutine.

• Has an intrinsic identity making the entity unique and distinguishable.

2For example a C++ code generator written in Python or Bash.
3Like Qt’s MOC.
4Although we envision that a constexpr-metaprogramming interface will also be added later in the future.
5Mostly in interpreted languages.
6For example generating new class data members.
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Since this paper deals with compile-time static reflection and its use in compile-time metaprogram-
ming, we will be talking about first- or second-class citizens in this regard. For the purpose of this
paper a first-class object is something that we can distinguish and reason about at compile-time
and what can be passed around as “data” in metaprograms – something that can be a template
parameter.

This means that a type, a template instance or a compile-time integral constant is for our purposes
a first-class object:

// compile-time "values"
struct value_a { };
struct value_b { };

// a compile-time "subroutine"
template <typename Param>
struct identity {

using result = Param;
};

// "values" are equality comparable and they are distinguishable
assert(!std::is_same_v<value_a, value_b>);
// and can be used for overloading
assert(!std::is_same_v<identity<value_a>, identity<value_b>>);

// they can be stored in named "variables" ...
using x = value_a;

// ... while maintaining their identity
assert(std::is_same_v<value_a, x>);

// they can be passed as parameters to subroutines
identity<value_a>;
identity<value_b>;

// they can be returned from subroutines
using y = identity<value_a>::result;
using z = identity<value_b>::result;

// ... while still maintaining their identity
assert(std::is_same_v<value_a, y>);
assert(std::is_same_v<value_b, z>);
// and still being distinguishable
assert(!std::is_same_v<y, z>);

On the other hand a namespace, a type alias or a template parameter do not have some or any of
these properties.

// other entities
namespace std { }
namespace foo = std;
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using bar = unsigned;
using baz = unsigned;

template <typename Param>
struct identity {

using result = Param;
};

// they are not distinguishable
std::is_same_v<bar, baz>;
// and cannot be used for overloading
std::is_same_v<identity<bar>, identity<baz>>;

// they are not even comparable
std::is_same_v<std, foo>;

// they cannot be passed as arguments to subroutines
identity<std>;
identity<foo>;

// nor returned as a result
namespace y = identity<foo>::result;

// those which can be returned ...
using z = identity<bar>::result;
// ... do not maintain their unique identity
std::is_same_v<z, baz>;

From the above follows, that a second-class object is everything else that is not a first-class object,
for example a namespace or a typedef.

1.1.6 Reification

Generally speaking reification or “thingification”7, is making something real, bringing it into being
as an entity with its own identity, or making something concrete.

In regard to programming languages, reification is often defined as making an entity in the language
a first-class object. So in the context of C++ template metaprogramming a type is reified, but a
namespace or a specifier is not.

2 Revision history

2.1 P0385R0

The initial revision of the design paper accompanying the P0194 papers.

7From latin “rei”, the dative form of “res” – a thing.
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2.2 P0385R1

This revision brought the following updates reflecting the changes made in the P0194R2 paper.

• Based on the feedback from Oulu, the specification of typedef and type alias reflection has
been simplified. We no longer require reflection to be aware of the whole chain of type aliases
especially not in the context of templates, each type alias only references the underlying type
with unique identity at the base level.

• Unlike in the previous revision it is now possible to create variables with metaobject types.

• Section 6.1.1 describing the for_each function planned to be included in future revisions has
been revised.

• The reverse reflection operator has been renamed to unreflexpr.

• The identifier-generating operator has been renamed to idreflexpr.

• The mechanism for enumerating public-only vs. all (including non-public ones) class members
has been changed. Now the “basic” operations like get_data_members, get_member_types,
etc. return all members, and the get_public_data_members, get_public_member_types,
return only the public class members.

• All examples have been revised and extended according to the changes listed above.

• New examples have been added to section 4.2 describing the design considerations.

• A description of the implementation has been added (section 8).

• A brief introduction to the Mirror reflection utilities has been added (section 9).

2.3 P0385R2 – current revision

We have made several big changes in revision R3 of the P0194 paper:

• We introduced the $ character to the basic source character set as a prefix for all reflection-
related operators – both the primary reflection operator which is already part of the wording
and for any which may be added in the future.

• The reflection-related operators have been renamed

– from reflexpr to $reflect,

– from unreflexpr to $unreflect and

– from idreflexpr to $identifier.

• The reflection-related namespace has been renamed from std::meta to std::reflect in
order to avoid confusion and conflicts with any potential metaprogramming library which
could be added in the future.

• The reflection-related header file has been renamed from <reflexpr> to <reflect>.

• Direct reflection of specifiers (previously reflexpr(public)) and metaobjects reflecting spec-
ifiers (conforming to the Specifier concept) have been removed temporarily and their func-
tionality has been partially replaced with boolean traits.
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• The metaobject concept hierarchy has been slightly changed; in addition to the Specifier,
the TagType concept has also been removed, its operations were taken over by Enum and
Record concepts. The Reversible concept has also been removed for the time being.

• The order of template parameters for MetaSequence operations has been matched to similar
operations of std::tuple.

• The suffix _m was reverted back to _t for all metaobject-returning operations.

In this revision of P0385 we made the following changes:

• Some of the use-cases were removed for the sake of brevity, please see the previous revisions
of this paper.

• The examples have been updated to match the wording from P0194R3.

3 Motivation

Generic programming and metaprogramming supported by reflection can be valuable tools in the
implementation of an extensive range of various use cases or programming patterns, including but
not limited to:

• serialization or conversion of data from the native C++ representation into a standard or
custom, text-based or binary format like XML, JSON, XDR, ASN1, etc.,

• (re-)construction of instances of both “atomic” and structured types from external data rep-
resentations, like those listed above, or from the data stored in a relational database, or from
data entered by a user through a user interface, or queried through a web service API,

• automated implementation of comparison operations or hash functions for structured types,

• automated generation of user interface elements,

• automatic generation of a relational schema from the application object model and object-
relational mapping (ORM),

• support for scripting or implementation of input data parsers,

• support for remote procedure calls (RPC) / remote method invocation (RMI),

• inspection and manipulation of existing objects via a user interface or a web service,

• visualization of objects or structured data and their relationships,

• automatic or semi-automatic implementation of certain software design patterns, for example
the factory pattern,

• implementation of cross-cutting aspects like debugging, logging, profiling, access control, etc.,

• implementation of array-of-structures to structure-of-arrays transformations,

• implementation of source code generators.

Some of the use cases listed above are described in more detail in section 5, and also in [2, 7].
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There are several approaches to the implementation of the mentioned functionality. The most basic,
straightforward and also usually the most error-prone is manual implementation. Many of the tasks
listed above are inherently repetitive and basically require to process and organize programming
language elements8 in a very uniform way which could be transcribed into a metaprogram9.

This leads to the second, heavily used approach: preprocessing and parsing of the program source
text by a usually very specific external program like, a documentation generation tool, an interface
definition language compiler for a RPC/RMI framework, a web service interface generator, a rapid
application development environment with a form designer, etc., resulting in additional program
source code, which is then integrated into the project and compiled into the final application binary.

This approach has several problems. First, it requires the external tools which may not fit well
into the build system or may not be portable between platforms or be free; second, such tools are
task-specific and many of them allow only a limited, if any, customization of the output and third,
there is a lot of repeated code related to the parsing, the representation and the manipulation of
the input program source.

Another way to automate these tasks is to use reflection and metaprogramming.

For example if we want to log the execution of a function, reflection may be used as a source of
metadata:

template <typename T>
T min(const T& a, const T& b) {

log() << "function: min<"
<< get_base_name_v<get_aliased_t<$reflect(T)>>
<< ">("
<< get_base_name_v<$reflect(a)> << ": "
<< get_base_name_v<get_aliased_t<get_type_t<$reflect(a)>>>
<< " = " << a
<< get_base_name_v<$reflect(b)> << ": "
<< get_base_name_v<get_aliased_t<get_type_t<$reflect(b)>>>
<< " = " << b
<< ")" << std::endl

return a<b?a:b;
}

Calling the min function:

double m = min(12.34, 23.45);

would produce the following log entry:

function: min<double>(a: double = 12.34, b: double = 23.45)

8types, structures, containers, functions, constructors, class member variables, enumerated values, etc.
9with varying level of complexity
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4 Design

4.1 Basic overview

As the introduction briefly mentions, the metadata reflecting base-level program declarations has its
own structure. One way to maintain this structure and to organize the individual, but related pieces
of metadata reflecting for example the structure of a class is to compose them into metaobjects.

In P0194 we propose to add support for compile-time reflection to C++ by the means of lightweight,
compiler-generated types – metaobjects, providing metadata describing various base-level program
declarations.

The Metaobjects themselves are opaque, without any visible internal structure. Values of such a
Metaobject type are default- and copy-constructible.

Their primary purpose is to give a first-class identity to the reflected entity10, so that we can pass
it as an argument or a return value in metaprograms and to separate the reflection of a declaration
from the querying of metadata11.

We introduce a new reflection operator – $reflect which returns a metaobject type reflecting its
operand.

For example:

using meta_global_scope = $reflect(::); // GlobalScope
using meta_int = $reflect(int); // Type
using meta_std = $reflect(std); // Namespace
using meta_std_size_t = $reflect(std::size_t); // Type and Alias
using meta_std_thread = $reflect(std::thread); // Class
using meta_std_pair = $reflect(std::pair<int, int>);// Class
using meta_std_launch = $reflect(std::launch); // Enum
using meta_std_launch_async = $reflect(std::launch::async); // Enumerator

or in the future revisions;

using meta_std_pair = $reflect(std::pair); // Template
using meta_std_sin = $reflect(std::sin); // OverloadedFunction

etc.

Since there are many different kinds of base-level declarations, the metaobjects reflecting them
are modeling various metaobject concepts, which also serve to classify metaobjects and to indicate
whether a metaobject has or has not a particular property;

static_assert(reflect::Named<$reflect(std)>);
static_assert(reflect::ScopeMember<$reflect(int)>);
static_assert(reflect::Scope<$reflect(std::string)>);
static_assert(reflect::Alias<$reflect(std::string::size_type)>);

or if is falls into a particular category:

10Namespace, type alias, function, parameter, specifier, etc.
11Which will happen very often in the more complex use cases
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static_assert(reflect::GlobalScope<$reflect(::)>);
static_assert(reflect::Namespace<$reflect(std)>);
static_assert(reflect::Type<$reflect(int)>);
static_assert(reflect::Class<$reflect(std::string)>);

The individual pieces of metadata can be obtained from a metaobject by using one of the class
templates which comprise its interface.

Some of this metadata like the class name or number of base classes is provided as compile-time con-
stant values, some as base-level types and some in the form of other metaobjects, like metaobjects
reflecting declaration scope or a sequence of metaobjects reflecting class members, etc.:

using meta_str = $reflect(std::string);

get_base_name_v<meta_str>; // a compile-time constant string
get_reflected_type_t<meta_str>; // a base-level type: std::string
get_scope_t<meta_str>; // another metaobject reflecting the scope
get_data_members_t<meta_str>; // a metaobject-sequence containing other metaobjects

P0194R3 also defines the initial subset of metaobject concepts which we assume to be essential and
which will provide a good starting point for future extensions.

4.2 Design considerations

The proposed static reflection facility has been designed with the following considerations and goals
in mind. Note that some of the principles listed here apply only to the whole reflection facility as
it is envisioned to look in the future, not to the initial, limited subset from P0194R3.

4.2.1 Completeness and reusability

The metadata provided by reflection is reusable in many situations and for many different purposes.
It does not focus on nor is limited only to the simple and immediately obvious use cases. New use
cases which we are not aware of at this moment, may emerge in the future. So having or not having
a compelling use case for a particular feature is a factor in the decision whether to include it, but
it should not be the most important one.

When completed, the proposed reflection facility will provide as much useful metadata as possible,
reflecting various base-level declarations like types, namespaces, variables, functions, templates,
specifiers12 and will provide access to scope members, base classes, etc.

This will make the compiler-assisted reflection13 a useful tool in a wide range of scenarios during
both compile-time and run-time and under various paradigms14 depending on the application needs.

12Like constness, storage-class, access, etc. specifiers
13Either by itself or serving as the foundation for other standard or third-party libraries.
14Object-oriented, functional, etc.
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4.2.2 Consistency

The reflection facility as a whole is consistent, instead of being composed of several ad-hoc,
individually-designed parts. This makes its interface more tidy, coherent and easier to learn and
teach.

4.2.3 Encapsulation

The metadata is not exposed directly to the user by many different compiler built-ins, operators or
special expressions. Instead it is accessible through conceptually well-defined interfaces, inspired
by the existing type-traits, already present in the C++ standard template library.

4.2.4 Stratification

Reflection is non-intrusive and the metaobjects are separated from the base-level language decla-
rations which they reflect:

float foo = 42.f;

using m_std = $reflect(std);
using m_int = $reflect(int);
using m_foo = $reflect(foo);

instead of for example

using m_std = std::reflect();
using m_int = int::reflect();
using m_foo = foo::reflect();

This is achieved by using the reflection operator which hides most of the “magic”, isolates reflection
from the rest of the language, for example by allowing to pass expressions not valid elsewhere as
operands.

It is also similar to the syntax of other existing operators in C++:

float foo = 42.f;

using foo_type = decltype(foo);
using meta_foo = $reflect(foo);

4.2.5 Meta-level reification

The metaobjects giving a first-class identity to declarations which are only second-class in base-
level C++, allow to partially “reify” namespaces, typedefs, specifiers, etc., without actually making
them first-class citizens. This in turn allows to pass their reflections around metaprograms even if
it was not possible with the base-level declarations.

template <typename X>
struct my_meta_algorithm {
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using result = /* ... */ ;
};

using x = my_meta_algorithm<$reflect(std)>::result; // OK

using y = my_meta_algorithm<std>::result; // Error

4.2.6 Ontological correspondence

The meta-level corresponds to the ontology of the base-level C++ language which it reflects. This
basically means that all important existing language features15 will eventually be reflected by
appropriate metaobjects, but new ones not having an equivalent in the base-level language16 will
not be invented.

Ontological correspondence is one of the main factors driving the definition of the individual metaob-
ject concepts and the design of their interfaces.

4.2.7 Efficiency

The proposed reflection is fine grained as much as possible. Things that are not needed for a
particular application, are not compiled into its program code nor result in increased compiler
footprint or compilation times.

The proposed reflection facility makes a completely lazy implementation of metaobjects possible.
Metaobjects are created only when requested and the reflection operator is able to generate very
lightweight types providing internal links back to the reflected declaration. The actual metadata17 is
materialized only when requested by the programmer via the templates which act as the metaobject
interface.

4.2.8 Ease of use

Although reflection-based metaprogramming should allow to implement very complicated meta-
algorithms, we try to adhere to the principle that things should be kept as simple as possible, but
not simpler18.

This can be achieved by having a solid and powerful compiler-assisted reflection as the foundation
and by implementing a simplifying facade on top of it once the common use-cases are identified.

Utilities such as enum-to-string, string-to-enum or get-type-name, etc., can be implemented on top
of reflection instead of each of them using their own “dedicated compiler magic”.

15Within reason, we certainly do not want to reflect every token in a C++ program.
16At least conceptually.
17Like a compile-time string containing the identifier, the list of metaobjects reflecting class members or the scope

of a declaration, etc.
18Credits to whoever said that.
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4.2.9 Integration

The proposed reflection facility is easily usable with the existing introspection utilities19 already
provided by the standard library and by other third-party libraries.

For example:

using meta_int = $reflect(int);
static_assert(is_integral_v<reflect::get_reflected_type_t<meta_int>>);

4.2.10 Extensibility

It is important be able to gradually add new features and to allow reflecting new declaration kinds in
the future without introducing breaking changes. The metaobjects make this goal easily achievable.

If we want to add reflection of previously unsupported declaration kind, for example the reflection
of functions, we define a new metaobject concept like Function and OverloadedFunction.

namespace reflect {

template <Object T>
concept bool Function =

Named<T> && ScopeMember<T> && Typed<T>
__metaobject_reflects_function(T);

template <Object T>
concept bool OverloadedFunction =

Named<T> && ScopeMember<T> &&
__metaobject_reflects_overloaded_function(T);

} // namespace reflect

Then we need to extend the list of expressions which can appear as operands to $reflect to include
specifiers, so that the following is valid code:

using meta_func = $reflect(std::sin);

To extend the interface of an existing metaobject by adding a new operation returning for example
the elaborated type specifier of a class we need to add a new template like:

namespace reflect {

template <Class T>
struct get_member_functions {

using type = /* unspecified-metaobject */ ;
};

template <OverloadedFunction T>
struct get_overloads {

using type = /* unspecified-metaobject */ ;
};

19Like the type-traits or typeid and std::type_info.
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template <Function T>
struct get_parameters {

using type = /* unspecified-metaobject */ ;
};

} // namespace reflect

4.3 Compile-time vs. run-time reflection

Run-time, dynamic reflection facilities may seem more readily usable, but with the increasing pop-
ularity of compile-time metaprogramming, the need for compile-time introspection20 and reflection
also increases.

Also, if compile-time reflection is well supported it is relatively easy to implement run-time or even
dynamically loadable reflection on top of it. The opposite is not true: One cannot use run-time
metaobjects or the value returned by their member functions as template parameters or compile-
time constants.

From the performance point of view, algorithms based on static meta-data offer more possibilities
for the compiler to do optimizations.

Thus, taking shortcuts directly to run-time reflection, without compile-time support has obvious
drawbacks.

4.4 Design evaluation

The proposed reflection facility – assuming it is fully completed – will have the following properties:

• covers many different use cases,

• is fairly powerful and expressive,

• is non-intrusive,

• is fine-grained,

• allows for efficient implementations,

• allows to manipulate and reason about all provided metadata at compile-time,

• gives the metadata a structure by arranging it into metaobjects,

• makes the metaobjects first-class entities allowing to pass representations of second-class base-
level language entities around metaprograms as arguments and return values and store them
in named “variables”21,

• it can serve as the foundation for other, compile-time or run-time reflection utilities imple-
menting other interfaces or façades aimed at various paradigms or use cases,

• contains and isolates all the required changes within the reflection operator(s),

20already taken care of by type_traits
21We cannot stress the importance of this feature enough.
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• limits the impact on existing code by prefixing the names of new operators with the $ sign
and by putting the concepts and templates into the nested std::reflect namespace,

• does not require any other changes to the core language, especially no new rules for template
parameters.

5 Use cases and examples

Note that some of the examples listed in this section use features which are not part of the initial
reflection specification, but which are planned as future additions.

Also please see the previous papers [2, 7] as well as [4] which describe several other important
use-cases that were omitted here for the sake of brevity.

5.1 Portable (type) names

One of the notorious problems of std::type_info is that the string returned by its name member
function is not standardized and is not even guaranteed to return any meaningful, unique human-
readable string, at least not without de-mangling, which is platform specific. Furthermore the
returned string is not constexpr and cannot be reasoned about at compile-time and is applicable
only to types. One other problem with typeid that it is not always aware of typedefs. In some
cases we would like to obtain the alias name, instead of the “real” name of a type or a class member
or function parameter.

The ability to uniquely map any type used in a program to a human-readable, portable, compile-
time string has several use-cases described in this paper.

The Named concept reflects named language constructs and provides the get_base_name operation
returning their basic name without any qualifiers or decorations. This can be with the help of
metaprogramming turned into a fully-qualified name. The get_display_name operation returns a
user-friendly implementation-dependent string containing the full name of a declaration, possibly
retaining type alias names.

5.2 Logging

When tracing and logging the execution of functions22 it is sometimes desirable to also include the
names of the parameter types or even the names of the parameters and other variables.

The best we can do with just the std::type_info is the following:

#if __PLATFORM_ABC__
std::string demangled_type_name(const char*) { /* implementation 1 */ }
#else if __PLATFORM_MNO__
std::string demangled_type_name(const char*) { /* implementation 2 */ }
#else if __PLATFORM_XYZ__
std::string demangled_type_name(const char*) { /* implementation N */ }

22especially template functions
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#else
std::string demangled_type_name(const char* mangled_name) {

// don’t know how to demangle this; let’s try our luck
return mangled_name;

}
#endif

template <typename T>
T min(const T& a, const T& b) {

log() << "min<"
<< demangled_type_name(typeid(T).name())
<< ">(" << a << ", " << b << ") = ";

T result = a<b?a:b;

log() << result << std::endl;

return result;
}

Which may or may not work, depending on the platform.

With the help of reflection we can do:

template <typename T>
T min(const T& a, const T& b) {

log() << "min<"
<< get_base_name_v<$reflect(T)>
<< ">(" << a << ", " << b << ") = ";

T result = a<b?a:b;

log() << result << std::endl;

return result;
}

The __PRETTY_FUNCTION__ macro generated by the compiler could be also used in this case, but
the format of the string which this macro expands into is not customizable (which may be necessary
for logs formatted in XML, JSON, etc.

A more elaborate output containing also the parameter names, type names and values can be
achieved by using reflection:

template <typename T>
T min(const T& a, const T& b) {

log() << "function: min<"
<< get_display_name_v<get_aliased_t<$reflect(T)>>
<< ">("
<< get_base_name_v<$reflect(a)> << ": "
<< get_display_name_v<get_aliased_t<get_type_t<$reflect(a)>>>
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<< " = " << a
<< get_base_name_v<$reflect(b)> << ": "
<< get_display_name_v<get_aliased_t<get_type_t<$reflect(b)>>>
<< " = " << b
<< ")" << std::endl

T result = a<b?a:b;

log() << get_base_name_v<$reflect(result)> << ": "
<< get_display_name_v<get_aliased_t<get_type_t<$reflect(result)>>>
<< " = " << result << std::endl;

return result;
}

Calling

double x = 12.34;
double y = 23.45;
double z = min(x, y);

would produce the following log entries:

function: min<double>(a: double = 12.34, b: double = 23.45)
result: double = 12.34

It is true that the lines:

<< get_base_name_v<$reflect(a)> << " = "
<< get_base_name_v<$reflect(b)> << " = "

could be replaced by preprocessor stringization

<< BOOST_PP_STRINGIZE(a) << ": "
<< BOOST_PP_STRINGIZE(b) << ": "

or just hard coded strings, like

<< "a: "
<< "b: "

but the compiler would not force the programmer to change the macro parameter or the content
of the string the if the parameters a and b were renamed for example to first and second. On
the other hand, it would enforce the change if reflection was used.

Furthermore, with the Function concept and the context-dependent reflection features, even more
would be possible; The function name and even the parameter names can be obtained from reflection
and encapsulated into a function.

template <typename MetaFunction, typename ... P>
void log_function_exec(MetaFunction, const std::tuple<P&...>& params) {

log() << "function: "
<< get_display_name_v<MetaFunction>
<< std::endl;
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// obtain the MetaParameter(s) from the MetaFunction
// and print them pairwise with the values from params.
for_each<get_parameters<MetaFunction>>(

[&params](auto meta_param) {
using MP = decltype(meta_param)::type;
log() << get_base_name_v<MP> << ": "

<< std::get<get_position_v<MP>>(params)
<< std::endl;

}
);

}

template <typename T>
T min(T a, T b) {

log_function_exec($reflect(this::function), std::tie(a, b));
/* ... */

}

template <typename T>
T max(T a, T b) {

log_function_exec($reflect(this::function), std::tie(a, b));
/* ... */

}

template <typename T>
T avg(T a, T b) {

log_function_exec($reflect(this::function), std::tie(a, b));
/* ... */

}

Logging is one of the use cases where display names are really useful. Consider for example that
we want to log the execution of a function with the following signature:

std::string::iterator foo(std::string::iterator iter);

The log is much cleaner and informative if it contains the typedef name iterator instead of
const char* on one platform, __normal_iterator<pointer, std::basic_string<char>> on
another and something completely different on yet another. On some platforms the definition
of iterator may even vary between build modes23 which may lead to confusion.

5.3 Implementing common functions and operators

This use case was part of the “targeted use cases” in the committee’s call for compile-time reflection
proposals [9]:

There are many functions that generally consist of boilerplate code, performing some action for each
member of a class. Such functions include equality operators, comparison operators, serialization
2332-bit vs. 64-bit or debug vs. release
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functions, hash functions and swap functions.

In other words for arbitrary structured type, for example:

struct S {
int i;
long l;
float f;

};

we want to create equality or non-equality comparison function like:

bool S_equal(const S& a, const S& b) {
bool result = true;
result &= a.i == b.i;
result &= a.l == b.l;
result &= a.f == b.f;
return result;

}

bool S_not_equal(const S& a, const S& b) {
bool result = false;
result |= a.i != b.i;
result |= a.l != b.l;
result |= a.f != b.f;
return result;

}

or a hash function:

std::size_t S_hash(const S& a) {
std::size_t result = 0u;
result ^= std::hash<int>()(a.i);
result ^= std::hash<long>()(a.l);
result ^= std::hash<float>()(a.f);
return result;

}

This is one of the many use cases where the for_each function described in section 6.1.1 comes in
handy. The above could be implemented along the lines of:

template <typename T>
struct compare_data_members {

const T& a;
const T& b;
bool& result;

template <reflect::Object MetaDataMember>
void operator()(MetaDataMember) const {

auto mem_ptr = reflect::get_pointer_v<MetaDataMember>;
result &= a.*mem_ptr == b.*mem_ptr;

}
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};

template <typename T>
bool generic_equal(const T& a, const T& b) {

using metaT = $reflect(T);
bool result = true;

reflect::for_each<reflect::get_data_members_t<metaT>>(
compare_data_members<T>{a, b, result}

);

return result;
}

If the reversible reflection feature described in section 6.2 was implemented then the helper could
take advantage of it:

template <typename T>
struct compare_data_members {

const T& a;
const T& b;
bool& result;

template <reflect::Object MetaDataMem>
void operator()(MetaDataMem) const {

result &= a.$unreflect(MetaDataMem) == b.$unreflect(MetaDataMem);
}

};

The helper could also be implemented by using a lambda function:

template <typename T>
std::size_t generic_hash(const T& a) {

std::size_t result = 0u;

reflect::for_each<reflect::get_data_members_t<$reflect(T)>>(
[&result,&a](auto meta_dm) {

using MetaDataMem = decltype(meta_dm)::type;
using MetaT = reflect::get_type_t<MetaDataMem>;

using T = reflect::get_reflected_type_t<MetaT>;
// or T = $unreflect(metaT);

auto mem_ptr = reflect::get_pointer_v<MetaDataMem>;

result ^= std::hash<T>(a.*mem_ptr);
// or ^= std::hash<T>(a.$unreflect(MetaDataMem));

}
);
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return result;
}

5.4 Enumerator to string and vice versa

This is another use case from the “targeted use cases” in the committee’s call for compile-time
reflection proposals [9].

The goal is to automate the implementation of functions which for a given enumeration value,
return the name of the enumeration value:

enum class E {
a, b, c, d, e, f

};

string E_to_string(E value) {
switch(value) {

case E::a: return "a";
case E::b: return "b";
case E::c: return "c";
case E::d: return "d";
case E::e: return "e";
case E::f: return "f";

}
return {};

}

or the other way around:

E string_to_E(const string& name) {
if(name == "a") return E::a;
if(name == "b") return E::b;
if(name == "c") return E::c;
if(name == "d") return E::d;
if(name == "e") return E::e;
if(name == "f") return E::f;

// or throw here
return {};

}

The Mirror reflection library [5] has several versions of enum-to-string and string-to-enum, based
on top of the clang implementation of P0194R2. The following code snippet is adjusted to match
the new wording:

template <typename Enum>
class enum_to_string {
private:

template <typename ... MEC>
struct _hlpr {
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static void _eat(bool ...) { }

static auto _make_map(void) {
using namespace std;

map<Enum, string> res;
_eat(res.emplace(

reflect::get_constant_v<MEC>,
string(reflect::get_base_name<MEC>())

).second...);
return res;

}
};

public:
const std::string& operator()(Enum e) const {

using namespace std;

using ME = $reflect(Enum);
using hlpr = reflect::unpack_sequence_t<

reflect::get_enumerators_t<ME>,
_hlpr

>;
static auto m = hlpr::_make_map();
return m[e];

}
};

and the string_to_enum utility:

template <typename Enum>
class string_to_enum {
private:

template <typename ... MEC>
struct _hlpr {

static void _eat(bool ...) { }

static auto _make_map(void) {
using namespace std;

map<string, Enum> res;
_eat(res.emplace(

string(reflect::get_base_name<MEC>()),
reflect::get_constant_v<MEC>

).second...);
return res;

}
};

public:
Enum operator()(const std::string& s) const {
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using namespace std;

using ME = $reflect(Enum);
using hlpr = reflect::unpack_sequence_t<

reflect::get_enumerators_t<ME>,
_hlpr

>;
static auto m = hlpr::_make_map();
auto p = m.find(s);
if(p == m.end()) {

throw runtime_error("Invalid enumerator name");
}
return p->second;

}
};

5.5 Simple serialization

We need to serialize instances of assorted classes into a structured external format like XML, JSON,
XDR or even into a format like Graphviz dot for the purpose of creating a visualization of a static
class or dynamic object hierarchy or graph.

Reflection makes this task trivial:

#include <reflect>
#include <iostream>

template <typename T>
std::ostream& value_to_json(std::ostream& out, const T& v);

template <typename ... T>
void eat(T ... ) { }

template <typename Metaobjects, std::size_t I, typename T>
int field_to_json(std::ostream& out, const T& v) {

using meta_F = std::reflect::get_element_t<Metaobjects, I>;

if(I > 0) out << ", ";

out << ’"’ << std::reflect::get_base_name_v<meta_F> << "\": ";

value_to_json(out, (v.*std::reflect::get_pointer_v<meta_F>));

return 0;
}

template <typename Metaobjects, std::size_t ... I, typename T>
void fields_to_json(std::ostream& out, const T& v, std::index_sequence<I...>) {
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eat(field_to_json<Metaobjects, I>(out, v)...);
}

template <typename MO, typename T>
std::ostream& reflected_to_json(std::ostream& out, const T& v, std::true_type) {

out << "{";

using meta_DMs = std::reflect::get_data_members_t<MO>;
fields_to_json<meta_DMs>(

out, v,
std::make_index_sequence<

std::reflect::get_size_v<meta_DMs>
>()

);

out << "}";
return out;

}

template <typename MO, typename T>
std::ostream& reflected_to_json(std::ostream& out, const T& v, std::false_type) {

return out << v;
}

template <typename T>
std::ostream& value_to_json(std::ostream& out, const T& v) {

using meta_T = $reflect(T);
return reflected_to_json<meta_T>(

out, v,
std::reflect::Record<meta_T>()

);
};

struct point { float x, y, z; };
struct triangle { point a, b, c; };

struct tetrahedron {
triangle base;
point apex;

};

int main(void) {
using namespace std;

tetrahedron t{
{{0.f,0.f,0.f}, {1.f,0.f,0.f}, {0.f,0.f,1.f}},
{0.f,1.f,0.f}

};
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std::cout << "{\"t\": ";
value_to_json(std::cout, t);
std::cout << "}" << std::endl;

return 0;
}

The above is a variation of an already working code from the implementation of P0194R2, which
produces the following output:

{"t": {"base": {"a": {"x": 0, "y": 0, "z": 0}, "b": {"x": 1, "y": 0, "z": 0}, \
"c": {"x": 0, "y": 0, "z": 1}}, "apex": {"x": 0, "y": 1, "z": 0}}}

5.6 Structure data member transformations

We need to create a new structure which has data members with the same or similar names as an
original structure, but we need to change some of the properties of the data members, usually their
types.

For example we need to transform a structure like:

struct foo {
bool b;
char c;
double d;
float f;
string s;

};

into

struct rdbs_table_placeholder_foo {
column_placeholder_t<bool> b;
column_placeholder_t<char> c;
column_placeholder_t<double> d;
column_placeholder_t<float> f;
column_placeholder_t<string> s;

};

or create a structure-of-arrays, which was one of the “targeted use cases” from the committee’s
CFP [9]:

struct soa_foo {
vector<bool> vec_b;
vector<char> vec_c;
vector<double> vec_d;
vector<float> vec_f;
vector<string> vec_s;

};
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The primary obstacle to implementing this use case with the help of reflection is at the moment
the fact that we do not have the ability to create C++ identifiers “programmatically”, at least not
without the help of the preprocessor.

We either have to add the ability to create identifiers from compile-time strings which may be fairly
complicated, or look for some simpler workarounds.

First, let’s say that we have a magic operator, like $identifier as described in 6.3.1 , which
“creates” an identifier from a compile-time string, so that for example:

$identifier("long") $identifier("foo")(int i, int j);

would be equivalent to

long foo(int i, int j);

To copy a name of another declaration from a metaobject reflecting it, we can use the get_base_name
operation, which returns a constexpr array of chars:

struct bar {
int foo;

};

using meta_bar_foo = $reflect(bar::foo);

long $identifier(reflect::get_base_name_v<meta_bar_foo>)(int i, int j);

In order to do anything more complex than just copying the identifiers of other declarations we
would need a compile-time string manipulation utility implementing for example functions for
compile-time string concatenation, like ct_concat:

int $identifier(ct_concat("get_", reflect::get_base_name_v<meta_bar_foo>))(const bar&);

which would be equivalent to:

int get_foo(const bar&);

With the help of multiple inheritance and the unpack_sequence helper template described in sec-
tion 6.1.2, we can create a new structure that is nearly equivalent to soa_foo via metaprogramming:

template <typename MetaDataMember>
struct soa_single_member {

// vector<T> Xs;
vector<reflect::get_reflected_type_t<reflect::get_type_t<MetaDataMember>>>

$identifier(ct_concat(reflect::get_base_name_v<MetaDataMember>, "s"));

/* constructors, forwarding parameters to the vector, ... */
};

template <typename ... MetaDataMembers>
struct soa_inherit_all
: soa_single_member<MetaDataMembers>... {
/* constructors forwarding parameters to the inherited soa_single_members */
};

28



P0385R2 – Static reflection
Rationale, design and evolution.

template <typename T>
struct soa
: reflect::unpack_sequence_t<

reflect::get_data_members_t<$reflect(T)>,
soa_inherit_all

> {
/* constructors forwarding parameters to soa_inherit_all */
};

using soa_foo = soa<foo>;

For a more detailed discussion on the possibilities of identifier generation see section 6.3 and also
section 6.4.

5.7 Simple examples of usage

This section shows several simple examples of usage working with the experimental implementation
of P0194R2, but transformed to use the new wording from P0194R3.

5.7.1 Scope reflection

#include <reflect>
#include <iostream>

namespace foo {

struct bar {
typedef int baz;

};

} // namespace foo

typedef long foobar;

int main(void) {
using namespace std;
using namespace std::reflect;

using meta_int = $reflect(int);
using meta_foo_bar = $reflect(foo::bar);
using meta_foo_bar_baz = $reflect(foo::bar::baz);
using meta_foobar = $reflect(foobar);

static_assert( ScopeMember<meta_int>);
static_assert( ScopeMember<meta_foo_bar>);
static_assert( ScopeMember<meta_foo_bar_baz>);
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static_assert( ScopeMember<meta_foobar>);

using meta_int_s = get_scope_t<meta_int>;
using meta_foo_bar_s = get_scope_t<meta_foo_bar>;
using meta_foo_bar_baz_s = get_scope_t<meta_foo_bar_baz>;
using meta_foobar_s = get_scope_t<meta_foobar>;

static_assert( Scope<meta_int_s>);
static_assert( Scope<meta_foo_bar_s>);
static_assert( Scope<meta_foo_bar_baz_s>);
static_assert( Scope<meta_foobar_s>);

static_assert( Namespace<meta_int_s>);
static_assert( GlobalScope<meta_int_s>);
static_assert( Namespace<meta_foo_bar_s>);
static_assert(!GlobalScope<meta_foo_bar_s>);
static_assert( Type<meta_foo_bar_baz_s>);
static_assert( Class<meta_foo_bar_baz_s>);
static_assert(!Namespace<meta_foo_bar_baz_s>);
static_assert( Namespace<meta_foobar_s>);
static_assert( GlobalScope<meta_foobar_s>);
static_assert(!Class<meta_foobar_s>);

cout << get_base_name_v<meta_foo_bar_baz> << endl;
cout << get_base_name_v<meta_foo_bar_baz_s> << endl;
cout << get_base_name_v<meta_foo_bar_s> << endl;

return 0;
}

Output:

baz
bar
foo

5.7.2 Namespace reflection

#include <reflect>
#include <iostream>

namespace foo { namespace bar { } }

namespace foobar = foo::bar;

int main(void) {
using namespace std;
using namespace std::reflect;

30



P0385R2 – Static reflection
Rationale, design and evolution.

using meta_foo = $reflect(foo);

static_assert( Object<meta_foo>);

static_assert(!GlobalScope<meta_foo>);
static_assert( Namespace<meta_foo>);
static_assert(!Type<meta_foo>);
static_assert(!Alias<meta_foo>);

static_assert( Named<meta_foo>);
static_assert( ScopeMember<meta_foo>);
cout << get_base_name_v<meta_foo> << endl;

using meta_foo_bar = $reflect(foo::bar);

static_assert( Object<meta_foo_bar>);

static_assert(!GlobalScope<meta_foo_bar>);
static_assert( Namespace<meta_foo_bar>);
static_assert(!Type<meta_foo_bar>);
static_assert(!Alias<meta_foo_bar>);

static_assert( Named<meta_foo_bar>);
static_assert( ScopeMember<meta_foo_bar>);
cout << get_base_name_v<meta_foo_bar> << endl;

using meta_foobar = $reflect(foobar);

static_assert( Object<meta_foobar>);

static_assert(!GlobalScope<meta_foobar>);
static_assert( Namespace<meta_foobar>);
static_assert(!Type<meta_foobar>);
static_assert( Alias<meta_foobar>);

static_assert( Named<meta_foobar>);
static_assert( ScopeMember<meta_foobar>);
cout << get_base_name_v<meta_foobar> << " a.k.a ";
cout << get_base_name_v<get_aliased_t<meta_foobar>> << endl;

return 0;
}

Output:

foo
bar
foobar a.k.a bar
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5.7.3 Type reflection

#include <reflect>
#include <iostream>

int main(void) {
using namespace std;
using namespace std::reflect;

using meta_unsigned = $reflect(unsigned);

static_assert( Object<meta_unsigned>);
static_assert( Type<meta_unsigned>);
static_assert(!Alias<meta_unsigned>);

static_assert( is_same_v<
get_reflected_type_t<meta_unsigned>,
unsigned

>);

static_assert( Named<meta_unsigned>);
cout << get_base_name_v<meta_unsigned> << endl;

using meta_ptr_unsigned = $reflect(unsigned*);
static_assert( Named<meta_ptr_unsigned>);
cout << get_base_name_v<meta_ptr_unsigned> << endl;

return 0;
}

Output:

unsigned int
unsigned int

5.7.4 Typedef reflection

#include <reflect>
#include <iostream>

namespace foo {

typedef int bar;
using baz = bar;

} // namespace foo

int main(void) {
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using namespace std;
uisng namespace std::reflect;

using meta_foo_baz = $reflect(foo::baz);

static_assert( Object<meta_foo_baz>);
static_assert( Type<meta_foo_baz>);
static_assert( Alias<meta_foo_baz>);

static_assert( is_same_v<
get_reflected_type_t<meta_foo_baz>,
foo::baz

>);

static_assert( Named<meta_foo_baz>);
cout << get_base_name_v<meta_foo_baz> << endl;

using meta_foo_bar = get_aliased_t<meta_foo_baz>;

static_assert( Object<meta_foo_bar>);
static_assert( Type<meta_foo_bar>);
static_assert( Alias<meta_foo_bar>);

static_assert( is_same_v<
get_reflected_type_t<meta_foo_bar>,
foo::bar

>);

static_assert( Named<meta_foo_bar>);
cout << get_base_name_v<meta_foo_bar> << endl;

using meta_int = get_aliased_t<meta_foo_bar>;

static_assert( Object<meta_int>);
static_assert( Type<meta_int>);
static_assert(!Alias<meta_int>);

static_assert( is_same_v<
get_reflected_type_t<meta_int>,
int

>);

static_assert( Named<meta_int>);
cout << get_base_name_v<meta_int> << endl;

return 0;
}
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Output:

baz
bar
int

5.7.5 Class alias reflection

#include <reflect>
#include <iostream>

struct foo { };
using bar = foo;

int main(void) {
using namespace std;
using namespace std::reflect;

using meta_bar = $reflect(bar);

static_assert( Object<meta_bar>);
static_assert( Type<meta_bar>);
static_assert( Class<meta_bar>);
static_assert( Alias<meta_bar>);

static_assert( is_same_v<get_reflected_type_t<meta_bar>, bar>);

static_assert( Named<meta_bar>);
cout << get_base_name_v<meta_bar> << endl;

using meta_foo = get_aliased_t<meta_bar>;

static_assert( Object<meta_foo>);
static_assert( Type<meta_foo>);
static_assert( Class<meta_foo>);
static_assert(!Alias<meta_foo>);

static_assert( is_same_v<get_reflected_type_t<meta_foo>, foo>);

static_assert( Named<meta_foo>);
cout << get_base_name_v<meta_foo> << endl;

return 0;
}

Output:

bar
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foo

Note that meta_bar is both an Alias and a Class.

5.7.6 Class data members (1)

#include <reflect>
#include <iostream>

struct foo {
private:

int _i, _j;
public:

static constexpr const bool b = true;
float x, y, z;

private:
static double d;

};

int main(void) {
using namespace std;
using namespace std::reflect;

using meta_foo = $reflect(foo);

// public data members
using meta_data_mems = get_public_data_members_t<meta_foo>;

static_assert(Object<meta_data_mems>);
static_assert(ObjectSequence<meta_data_mems>);

cout << get_size_v<meta_data_mems> << endl;

// 0-th (public) data member
using meta_data_mem0 = get_element_t<meta_data_mems, 0>;

static_assert(Object<meta_data_mem0>);
static_assert(Variable<meta_data_mem0>);
static_assert(Typed<meta_data_mem0>);

cout << get_base_name_v<meta_data_mem0> << endl;

// 2-nd (public) data member
using meta_data_mem2 = get_element_t<meta_data_mems, 2>;

static_assert(Object<meta_data_mem2>);
static_assert(Variable<meta_data_mem2>);
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static_assert(Typed<meta_data_mem2>);

cout << get_base_name_v<meta_data_mem2> << endl;

// all data members
using meta_all_data_mems = get_data_members_t<meta_foo>;

static_assert(Object<meta_all_data_mems>);
static_assert(ObjectSequence<meta_all_data_mems>);

cout << get_size_v<meta_all_data_mems> << endl;

// 0-th (overall) data member
using meta_all_data_mem0 = get_element_t<meta_all_data_mems, 0>;

static_assert(Object<meta_all_data_mem0>);
static_assert(Variable<meta_all_data_mem0>);
static_assert(Typed<meta_all_data_mem0>);

cout << get_base_name_v<meta_all_data_mem0> << endl;

// 3-rd (overall) data member
using meta_all_data_mem3 = get_element_t<meta_all_data_mems, 3>;

static_assert(Object<meta_all_data_mem3>);
static_assert(Variable<meta_all_data_mem3>);
static_assert(Typed<meta_all_data_mem3>);

cout << get_base_name_v<meta_all_data_mem3> << endl;

return 0;
}

This produces the following output:

4
b
y
7
_i
x

5.7.7 Class data members (2)

#include <reflect>
#include <iostream>

struct foo {
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private:
int _i, _j;

public:
static constexpr const bool b = true;
float x, y, z;

private:
static double d;

};

template <typename ... T>
void eat(T ... ) { }

template <typename Metaobjects, std::size_t I>
int do_print_data_member(void) {

using namespace std;

typedef reflect::get_element_t<Metaobjects, I> metaobj;

cout << I << ": "
<< (reflect::is_public_v<metaobj>?"public":"non-public")
<< " "
<< (reflect::is_static_v<metaobj>?"static":"")
<< " "
<< reflect::get_base_name_v<reflect::get_type_t<metaobj>>
<< " "
<< reflect::get_base_name_v<metaobj>
<< endl;

return 0;
}

template <typename Metaobjects, std::size_t ... I>
void do_print_data_members(std::index_sequence<I...>) {

eat(do_print_data_member<Metaobjects, I>()...);
}

template <typename Metaobjects>
void do_print_data_members(void) {

using namespace std;

do_print_data_members<Metaobjects>(
make_index_sequence<

reflect::get_size_v<Metaobjects>
>()

);
}

template <typename MetaClass>
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void print_data_members(void) {
using namespace std;

cout<< "Public data members of " << reflect::get_base_name_v<MetaClass> << endl;

do_print_data_members<reflect::get_public_data_members_t<MetaClass>>();
}

template <typename MetaClass>
void print_all_data_members(void) {

using namespace std;

cout << "All data members of " << reflect::get_base_name_v<MetaClass> << endl;

do_print_data_members<reflect::get_data_members_t<MetaClass>>();
}

int main(void) {
print_data_members<$reflect(foo)>();
print_all_data_members<$reflect(foo)>();

return 0;
}

This program produces the following output:

Public data members of foo
0: public static bool b
1: public float x
2: public float y
3: public float z
All data members of foo
0: non-public int _i
1: non-public int _j
2: public static bool b
3: public float x
4: public float y
5: public float z
6: non-public static double d

5.7.8 Class data members (3)

#include <reflect>
#include <iostream>

struct A {
int a;

};
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class B : public A {
private:

bool b;
};

class C : public B {
public:

char c;
};

int main(void) {
using namespace std;
using namespace std::reflect;

using meta_A = $reflect(A);
using meta_B = $reflect(B);
using meta_C = $reflect(C);

cout << get_size_v<get_public_data_members_t<meta_A>> << endl;
cout << get_size_v<get_public_data_members_t<meta_B>> << endl;
cout << get_size_v<get_public_data_members_t<meta_C>> << endl;

cout << get_size_v<get_data_members_t<meta_A>> << endl;
cout << get_size_v<get_data_members_t<meta_B>> << endl;
cout << get_size_v<get_data_members_t<meta_C>> << endl;

return 0;
}

This program produces the following output:

1
0
1
1
1
1

Note that neither the result of get_data_members nor the result of get_public_data_members
includes the inherited data members.

6 Future extensions

In this section we would like to discuss possible future extensions and the evolution of reflection.

It is important to emphasize that the features discussed in this section are not part of the initial
implementation of reflection as proposed in the P0194Rx papers.
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6.1 Additional utilities

In this section we describe several useful metaprogramming utilities which could be added later to
the standard library to simplify the use of the basic reflection primitives in certain cases.

6.1.1 for_each

The for_each function should sequentially call a specified UnaryFunction on instances of metaob-
jects from a ObjectSequence. It should be equivalent to the following:

namespace reflect {

template <typename MetaObjectSequence, typename UnaryFunction>
void for_each(UnaryFunction func) {

func(Metaobject1{});
func(Metaobject2{});
/* ... */
func(MetaobjectN{});

}

} // namespace reflect

For example:

reflect::for_each<reflect::get_data_members_t<$reflect(my_class)>>(
[](auto idmo) {

using MO = decltype(idmo);
...

}
);

6.1.2 unpack_sequence_if

We already have the unpack_sequence template which instantiates the provided variadic template
with metaobjects from a ObjectSequence.

namespace reflect {

template <typename MetaObjectSequence, template <typename ...> class Template>
struct unpack_sequence {

typedef Template<Metaobject1, Metaobject2, ... MetaobjectN> type;
};

template <typename MetaObjectSequence, template <typename ...> class Template>
using unpack_sequence_t =

typename unpack_sequence<MetaobjectSequence, Template>::type;

} // namespace reflect

We could also add the following variant of unpack_sequence to be able to unpack only metaobjects
satisfying a given predicate:
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namespace reflect {

template <
typename MetaObjectSequence,
template <typename ...> class Template,
template <typename> class Predicate

>
struct unpack_sequence_if {

typedef Template<...> type;
};

template <
typename MetaObjectSequence,
template <typename ...> class Template,
template <typename> class Predicate

>
using unpack_sequence_if_t =

typename unpack_sequence_if<
MetaobjectSequence,
Template,
Predicate

>::type;

} // namespace reflect

6.2 Reversing reflection

The $reflect operator allows to obtain the meta-level representation of a base-level declaration.
But what if we wanted to do the opposite: to get back the original declaration from a metaobject?

This of course would make sense only for a subset of metaobjects, so let’s define a new concept like
Reversible.

One way to achieve this would be to add new operator – $unreflect.

Let’s look at some possible use cases for this feature. The most trivial one is to replace the
get_reflected_type template from the interface of Type:

using MT = $reflect(int);

// ... lots of other code here ...

// Now we arrived to a point where we need
// to get the base-level type reflected by ‘MT‘.

// Instead of using get_reflected_type ...
using T = get_reflected_type_t<MT>;

// we could do:
static_assert(reflect::Reversible<MT> && reflect::Type<MT>);
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using T = $unreflect(MT);
static_assert(is_same_v<T, int>);

But that’s far from being the only use case. If we could get back to the original namespace or
variable;

namespace foo {
std::string str;

void bar(const std::string&);
} // namespace foo

using MV = $reflect(foo::str); // Variable

// ... lots of code here ...
// using namespace foo;
using namespace $unreflect(get_scope_t<MV>);

// [foo::]bar(foo::str);
bar($unreflect(MV));

or even selecting whole namespaces (meta-)programmatically;

namespace foo {
void func1(const std::string&);
void func2(int, int, int);
int func3(long, short, bool);

} // namespace foo

namespace bar {
void func1(const std::string&);
void func2(int, int, int);
int func3(long, short, bool);

} // namespace bar

template <typename MN>
void algorithm(const string& str, int i, int j) {

// [foo|bar]::func1
$unreflect(MN)::func1(str);

// [foo|bar]::func2([foo|bar]::func3(i*j, 64, i == j), i, j);
$unreflect(MN)::func2($unreflect(MN)::func3(i*j, 64, i == j), i, j);

}

void func(const string& str, int i, int j, bool want_foo) {
if(want_foo) {

algorithm<$reflect(foo)>(str, i, j);
} else {

algorithm<$reflect(bar)>(str, i, j);
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}
}

or get back to the original function;

namespace foo {
void bar(const std::string&);

} // namespace foo

using MF = $reflect(foo::bar); // Function

// ... lots of code here ...
// foo::bar("hello");
$unreflect(MF)("hello");

or back to the original class data member;

struct my_struct {
int i;
float f;

};

// DataMember
using MDM = $reflect(foo::bar::i);

my_struct x {123, 45.67f};

assert(x.i == 123);
// x.i = 234;
x.$unreflect(MDM) = 234;
assert(x.i == 234);

or go back to the original template;

// Template
using MTpl = $reflect(std::pair);

// std::pair<int, std::string> p;
$unreflect(MTpl)<int, std::string> p{10, "Hi!"};

and so on.

Combined with the fact that all metaobjects are first-class entities this would make a very powerful
feature, which would essentially allow to reify all reflectable declarations at the meta-level, even
those which are second-class without actually reifying them at the base-level24

6.3 Generating identifiers programmatically

Some of the use cases from the committee’s CFP, for example the one described in section 5.6,
depend on the ability to generate identifiers programmatically.
24At the cost of the round-trip through the meta-level.
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6.3.1 Identifier from a generic compile-time string

We will start by the most powerful, but also the most difficult to implement option – an operator,
say $identifier(const char (&)[N])25, which “creates” an identifier from an arbitrary compile-
time string, so that:

$identifier("std")::$identifier("size_t")
$identifier("foo")(int $identifier("i"), int j);

would be equivalent to

std::size_t foo(int i, int j);

Remember that the string-returning operations defined on the named metaobjects, for example the
reflect::get_base_name operation, return constexpr arrays of chars. This means that we can
use them to copy the name of a declaration, from a metaobject reflecting that declaration:

struct bar {
int foo;

};

using meta_bar_foo = $reflect(bar::foo);

std::size_t $identifier(reflect::get_base_name_v<meta_bar_foo>)(int i, int j);

which is again equivalent to:

std::size_t foo(int i, int j);

It’s important to note, that in order to do anything more complex than just copying the identifiers of
other declarations, we would also need some compile-time string manipulation utility. For example
to create identifiers like get_% or set_% where % is a declaration name, we would need to have a
function for compile-time string concatenation, like ct_concat:

using meta_bar_foo = $reflect(bar::foo);

int $identifier(ct_concat("get_", reflect::get_base_name_v<meta_bar_foo>))(const bar&);

which would be equivalent to:

int get_foo(const bar&);

While being very appealing and powerful, implementing this feature may also prove to be challeng-
ing, especially taking the different phases of compilation into account.

6.3.2 Identifier formatting

Another option is a simplified version of the operator $identifier, which would take a format
string literal and optionally a pack of Named metaobjects:

struct bar {
int foo;

25We do not insist on this particular name in case it should be implemented.
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};

using meta_bar = $reflect(bar);
using meta_foo = $reflect(bar::foo);

$identifier("int")
$identifier("get_%1_%2", meta_bar, meta_foo)(const $identifier("%1", meta_bar)&);

which would result in:

int get_bar_foo(const bar&);

In this case we would only allow string literals, not arbitrary constexpr string-returning expressions
and the identifier formatting would be handled inside of the compiler.

6.3.3 named_data_member and named_member_typedef

If we don’t want to implement the operator $identifier or expose it to the users directly, the
third option is to add new operations like named_member_typedef and named_data_member for
Named metaobjects equivalent to the following:

template <MetaNamed MO, typename X>
struct named_member_typedef {

struct type {
// same as
// typedef X $identifier(reflect::get_base_name_v<MO>);
typedef X __builtin_identifier_of(MO);

};
};

template <MetaNamed MO, typename X>
struct named_data_member {

struct type {
// same as
// X $identifier(reflect::get_base_name_v<MO>);
X __builtin_identifier_of(MO);

template <typename ... P>
type(P&& ... p)
: __builtin_identifier_of(MO)(forward<P>(p)...)

{ }
};

};

template <MetaNamed MO, typename X>
using named_member_typedef_t = typename named_member_typedef<MO, X>::type;

template <MetaNamed MO, typename X>
using named_data_member_t = typename named_data_member<MO, X>::type;
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So for example the specializations of named_member_typedef and named_data_member for the
metaobject reflecting bar::foo would look like this:

template <typename X>
struct named_member_typedef<$reflect(bar::foo), X> {

struct type {
typedef X foo;

};
};

template <typename X>
struct named_data_member<$reflect(bar::foo), X> {

struct type {
X foo;

template <typename ... P>
type(P&& ... p)
: foo(forward<P>(p)...)

{ }
};

};

With some clever metaprogramming we can combine specializations of named_data_member_t<...>
or named_member_typedef_t<...> into structures having member types or variables with names,
matching other existing declarations.

Note that this option does not give use the ability to change the identifiers, just copy them and it’s
generally less powerful. On the other hand, implementing it may be much less complicated than
the first two options.

6.4 Variadic composition

Another feature which26 has the potential to greatly simplify the implementation of several impor-
tant use cases, including the structure data member transformations, is variadic composition.

We already have variadic inheritance that is used in the implementation of tuples for example, but
we don’t have variadic composition.

The reason for this is simple – every class data member needs to have a name which is unique in the
scope of its class and since we don’t have the ability to generate identifiers, we cannot implement
variadic composition.

For instance, the structure-of-arrays transformation described in section 5.6 could be simplified by
using variadic composition, together with the “identifier formatting operator” described in section
6.3.2 and the unpack_sequence helper template described in section 6.1.2:

template <DataMember ... MDM>
struct soa_helper {

std::vector<reflect::get_reflected_type_t<reflect::get_type_t<MDM>>>

26together with the ability to generate identifiers
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$identifier("vec_%1", MDM)...;
};

template <typename T>
using soa = reflect::unpack_sequence_t<

reflect::get_data_members_t<$reflect(T)>,
soa_helper

>;

With the “reversible reflection” feature described in section 6.2, the soa_helper could be imple-
mented as:

template <DataMember ... MDM>
struct soa_helper {

std::vector<$unreflect(reflect::get_type_t<MDM>)>
$identifier("vec_%1", MDM)...;

};

6.5 Specifier reflection

There are several use-cases where the reflection of specifiers would be useful.

We might want for example to “copy” the storage class specifier of one variable to other variables

thread_local int dummy_v;
using m_storage = get_storage_class_specifier_t<$reflect(dummy_v)>;

$unreflect(m_storage) long foo_v; // thread_local long foo_v;
$unreflect(m_storage) double bar_v; // thread_local double bar_v;
$unreflect(m_storage) short baz_v; // thread_local short baz_v;

or the linkage specifier from one function to several other functions:

static inline void dummy_f(void);
using m_linkage = get_linkage_specifier_t<$reflect(dummy_f)>;

$unreflect(m_linkage) volatile int foo_f(int); // static volatile int foo_f(int);
$unreflect(m_linkage) long bar_f(short, short); // static long bar_f(short, short);

The open question at the moment is whether we should allow “direct” reflection of specifiers since
some keywords like inline or virtual have several different meanings:

#ifdef IMPLEMENT
using m_linkage = $reflect(static);
#else
using m_linkage = $reflect(extern);
#endif

$unreflect(m_linkage) volatile int foo_f(int);
$unreflect(m_linkage) long bar_f(short, short);
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6.6 Context-dependent reflection

One of the interesting potential future extensions of reflection is context-dependent reflection. Cur-
rently the operands of $reflect are names of the base-level entities which we want to reflect.

Context-dependent reflection would allow to obtain metadata based on the context in which the
reflection operator is invoked, instead of on the declaration name.

This could take the form of either something simple like:

$reflect()

which would reflect the current scope or even the current position in the source code, or several
new expressions could be added as valid operands for $reflect, allowing to reflect the current
namespace, class, template or function as described below.

6.6.1 Namespaces

If the this::namespace expression was used as the operand of the reflection operator, then it would
return a Namespace reflecting the innermost namespace inside of which the reflection operator
was invoked.

For example:

using _meta_gs = $reflect(this::namespace);

reflects the global scope namespace and is equivalent to

using _meta_gs = $reflect(::);

For named namespaces:

namespace foo {

using _meta_foo = $reflect(this::namespace);

namespace bar {

using _meta_foo_bar = $reflect(this::namespace);

} // namespace bar

} // namespace foo

6.6.2 Classes

If the this::class expression was used as the argument of the reflection operator, then it would
return a Class reflecting the class inside of which the reflection operator was invoked.

For example:

struct foo {
const char* _name;
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// reflects foo
using _meta_foo1 = $reflect(this::class);

foo(void)
: _name(get_base_name_v<$reflect(this::class)>())

{ }

void f(void) {
// reflects foo
using _meta_foo2 = $reflect(this::class);

}

double g(double, double);

struct bar {
// reflects foo::bar
using _meta_foo_bar = $reflect(this::class);

};
};

double foo::g(double a, double b) {
// reflects foo
using _meta_foo3 = $reflect(this::class);
return a+b;

}

class baz {
private:

using _meta_baz = $reflect(this::class);
};

using _meta_cls = $reflect(this::class); // error: not used inside of a class.

6.6.3 Functions

If the this::function expression was used as the argument of the reflection operator, then it
would return a Function reflecting the function or operator inside of which the reflection operator
was invoked.

For example:

void foobar(void) {
// reflects this particular overload of the foobar function
using _meta_foobar = $reflect(this::function);

}

int foobar(int i) {
// reflects this particular overload of the foobar function
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using _meta_foobar = $reflect(this::function);
return i+1;

}

class foo {
private:

void f(void) {
// reflects this particular overload of foo::f
using _meta_foo_f = $reflect(this::function);

}

double f(void) {
// reflects this particular overload of foo::f
using _meta_foo_f = $reflect(this::function);
return 12345.6789;

}
public:

foo(void) {
// reflects this constructor of foo
using _meta_foo_foo = $reflect(this::function);

}

friend bool operator == (foo, foo) {
// reflects this operator
using _meta_foo_eq = $reflect(this::function);

}

using _meta_fn = $reflect(this::function); // error
};

using _meta_fn = $reflect(this::function); // error

6.6.4 Templates

If the this::template expression was used as the argument of the reflection operator, then it
would return a Template reflecting the class (or function) template inside of which the reflection
operator was invoked.

For example:

template <typename First, typename Second, typename Third>
struct triplet {

// reflects the template not the instantiation
using _meta_tpl = $reflect(this::template);

// reflects the instantiation not the template
using _meta_cls = $reflect(this::class);

};
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6.7 Metaobject unique ID

In order to accommodate different programming paradigms, it may be advantageous to represent
metaobjects as both types and optionally also as constexpr values and have the ability to convert
between these representations.

The compile-time value representation of a metaobject could be defined as:

namespace reflect {

class object_uid {
public:

constexpr object_uid(void) noexcept;
constexpr object_uid(const object_uid&) noexcept;

friend constexpr
bool operator == (object_uid, object_uid) noexcept;

friend constexpr
bool operator != (object_uid, object_uid) noexcept;

friend constexpr
bool operator < (object_uid, object_uid) noexcept;

};

} // namespace reflect

The actual identifier could internally be something like a constant value of int, std::size_t or
std::intptr_t storing an index, a hash or an encoded (and possibly encrypted) pointer to the
internal representation of the metaobject in the compiler or something similar. This would however
be a hidden implementation detail.

The advantage of the object_uid is that we could represent heterogeneous metaobjects – different
types, as constexpr instances of a homogeneous type and store them in constexpr data structures
and use them with constexpr functions.

Instances of object_uid could be queried from a metaobject by a new operation, implemented by
the following template:

namespace reflect {

template <Object T>
struct get_uid {

constexpr const object_uid value = /* ... */ ;
};

template <Object T>
constexpr object_uid get_uid_v = get_uid<T>::value;

} // namespace reflect

As long as an instance of reflect::object_uid stayed constexpr, it would also be possible to
convert it back to a metaobject (type), for example by using a new version of the reflection operator
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$reflect:

// pseudocode
constexpr Object $reflect(reflect::object_uid);

This feature would make the use of reflection more convenient in some use cases or under some
paradigms and could help to simplify the implementation of the higher-level façades.

The experimental implementation described in section 8 already represents metaobjects as integral
constants and makes the addition of the functionality described above trivial.

7 Issues

7.1 Interaction with attributes

Q: Should we even reflect attributes? If so, how will the reflection of generalized attributes look
like?

Currently generalized attributes are used mostly as hints to the compiler. They can help the
compiler to do some optimizations27 or to indicate that the user really means to do something
what in other circumstances could be a bug28 that the compiler warns about, etc.

Some people argue that generalized attributes are not supposed to have any semantic effects – a
compiler should be able to completely strip a program of all attributes and it should not have any
effects on the behavior of the program.

Attributes could however be viewed more broadly as a generic mechanism for annotating declara-
tions29 in the code, without explicitly saying that the recipient can only be the compiler. There
are valid use cases for user annotations and since the annotations usually provide additional con-
ceptual (meta-)information about a declaration, reflection is a natural mechanism for accessing the
annotations.

We favor the view that on the base-level the compiler should be able to strip attributes30, but it
should reflect them on the meta-level on demand.

Having covered that, the reflection of the “simple” attributes like [[attr1]] or [[namespace::attr2]]
could be pretty straightforward:

We add a Attribute concept, make it conform to Named and Scoped concepts and then add an
operation to the interface of Object like get_attributes, returning a sequence of metaobjects
reflecting the attributes on a base-level declaration.

The complication is that attributes can have nearly arbitrary parameters; [[probably(true)]],
[[deprecated("reason")]], [[visibility(hidden)]], [[gnu::aligned(64)]]. The reflection
of such attributes and their arguments is currently unresolved.

27for example the probably(true) or carries_dependency attributes
28like the fallthrough or maybe_unused attributes
29Associating one or more constant values with the declarations.
30or to ignore attributes which it does not understand
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7.2 Interaction with concepts

Q: Are there any special interactions between compile-time reflection and concepts?

Unresolved.

7.3 Interaction with modules

Q: Are there any special interactions between compile-time reflection and modules?

Unresolved.

8 Experimental implementation

A fork of the clang compiler with a partial, experimental implementation of P0194R2 can be found
on github [3]. Please see [8] (P0194R2) for more details.

Due to time-constraints there is no implementation of P0194R3 available at the moment of writing
of this paper.

9 The Mirror reflection utilities

In order to show the usability of the proposed reflection facility, we have implemented a set of
higher level reflection utilities and examples built on top of it. The source code repository can be
found in [6] and the documentation also including the build-instructions is in [5].

10 Frequently asked questions

10.1 Why metaobjects, why not reflect directly with type traits?

Q: Why should we bother with defining a set of metaobject concepts, let the compiler generate
models of these concepts and use those to obtain the metadata? Why not just extend the existing
type traits?

A: The most important reasons are the completeness and the scope of reflection. Type traits31 work
just with types. A reflection facility should however provide much more metadata. It should be able
to reflect namespaces, functions, constructors, class inheritance, templates, specifiers, variables, etc.

Without drastically changing the rules specifying what can or cannot be a template parameter, we
cannot properly reflect C++’s second-class declarations like namespaces.

This is also connected with the usability of reflection in metaprograms. Using types to reflect various
base-level declarations, allows to pass a representation of a namespace, a constructor, a specifier or
a parameter, around various “subroutines” of a metaprogram as a parameter or a return value.

31As they are defined now.
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In order to achieve this by other means it would be necessary to make namespaces, etc. first-class
objects or at least to allow them to become template arguments.

So with type-based metaobjects we can do for example the following:

template <typename Metaobject>
void foo(void) { // do something terribly useful }

foo<$reflect(int)>(); // works
foo<$reflect(std)>(); // works
foo<$reflect(std::string)>(); // works
foo<$reflect(std::string::size_type)>(); // works
foo<$reflect(std::size_t)>(); // works and is different from the above
foo<$reflect(std::pair)>(); // works
foo<$reflect(std::sqrt)>(); // works
foo<$reflect(static)>(); // works

meanwhile without metaobjects:

template <something Param>
void foo(void) { // do something terribly useful, if possible }

foo<int>(); // works
foo<std>(); // error?
foo<std::string>(); // works
foo<std::string::size_type>(); // works
foo<std::size_t>(); // works but same as the above
foo_tpl<std::pair>(); // works (if there are two versions of foo)
foo<std::sqrt>(); // error?
foo<static>(); // error?

10.2 OK, but why not reflect directly with several different operators?

Q: Alright, we partially agree with the reasoning in the previous question, but why don’t we use
several different operators to get the various pieces of metadata (like declaration names, types,
scopes, etc.) directly, skipping the metaobjects? For example we already have decltype(expr) so
why not add, declname(expr) or declscope(expr), etc.

A: The main reason is that there are many base-level declarations with various properties which
we want to reflect and having a separate operator for every one of them32, will require many new
reserved keywords which can break existing code.

And still, what would the operator reflecting for example a scope return? In case of class scopes it
could return a type, but what if we are asking about the scope of a global-scope or namespace-level
declaration? We would either end up with something like the proposed metaobjects, or we would
have to make some other (not type-based) representation of any possible scope. In case of the latter
we would loose the ability to pass the representation of the scope as parameters to metaprograms.

32There may be even several dozen.
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The same applies to every other operation returning an expression which does not have first-class
identity in base-level C++.

It is possible that, the templates implementing the metaobject operations will internally use com-
piler built-ins33, but these can use compiler-specific reserved keywords and they will all operate on
the metaobjects.

10.3 Creating a separate type for each metaobject is so heavyweight.

Q: Isn’t the creation of a new type for each metaobject too heavyweight? Won’t it lead to unacceptable
increases in the memory footprint and compilation times?

A: This might have been a problem if the metaobjects were regular types and if the implementation
was too coarse-grained or too eager.

For example if upon the invocation of $reflect(std::string), the representations of all the
metadata related to the std::string type34 were generated immediately.

This is however not the case.

The metaobjects need to be types just enough so that they can be used as template arguments
and types of default- and copy-constructible variables. They don’t need to have any name, scope,
virtual method tables, run-time type information, etc. All they need to have is a unique identity
and their internal representations need to point to the internal representations of the declarations35

which they reflect.

Our proposal allows very fine granularity. The result of $reflect can be a very lightweight type,
as we just described and the individual “attributes” like the name, scope, members, specifiers, etc.
related to the metaobject are materialized only when requested by one of the operations defined
for that particular metaobject concept, like get_base_name, get_scope, get_data_members, etc.

10.4 There’s already another expression for that!

Q: There are situations where you can do something much more easily without reflection than with
it, like &variable vs. reflect::get_pointer_v<$reflect(variable)> or
decltype(var) vs. reflect::get_reflected_type_t<reflect::get_type_t<$reflect(var)>>,
etc.

A: Of course there are! There are also situations where the decision that you want to get a pointer
to or a to get the type of a (reflected) variable can be separated from the actual site where you
access (reflect) the variable by several layers of metaprogramming.

Consider for example the following pseudo-code:

template <typename T>
void handle_var(const char* name, const T* ptr) {

/* ... */
}

33Just like some of the type traits are implemented.
34Like the compile-time representation of its name and the metaobjects reflecting its scope or its members.
35Which the compiler needs to maintain anyway, regardless of reflection.
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template <MetaVariable MV>
void handle_meta_var(void) {

// this may be true only in a fraction of cases
if(some_logic()) {

// we need the pointer just here
handle_var(

reflect::get_base_name_v<MV>,
reflect::get_pointer_v<MV>

);
}

}

template <MetaClass MC>
void handle_meta_class(void);

template <MetaType MT>
void handle_meta_type(void);

template <MetaVariable MV>
void handle_meta_ns(void);

template <Metaobject MO>
void generic_func_1(void) {

// this may be true only in a fraction of cases
if(reflect::Variable<MO>) {

handle_meta_var<MO>();
} else if(reflect::Class<MO>) {

handle_meta_class<MO>();
} else if(reflect::Type<MO>) {

handle_meta_type<MO>();
} else if(reflect::Namespace<MO>) {

handle_meta_ns<MO>();
}

}

template <Metaobject MO>
void generic_func_2(void) {

if(some_trait_v<MO>) {
generic_func_1<MO>();

}
else ...

}

// ... generic_func_3 - generic_func_19 ...
// all eventually calling generic_func_1

template <Metaobject MO>
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void generic_func_20(void) {
if(some_logic()) {

generic_func_19<MO>();
} else {

generic_func_15<MO>();
}

}

void main(int argc, const char** argv) {
std::string str;
generic_func_20<$reflect(str)>();
generic_func_18<$reflect(std)>();
generic_func_19<$reflect(argc)>();
generic_func_20<$reflect(std::pair)>();
// etc.

return 0;
}

In this case we actually need the pointer or a reference to a variable only in a fraction of cases,
deep inside of the (meta-)program.

If we didn’t have the get_pointer operation, we would have to get the pointer very early and pass
it through the whole algorithm. Furthermore in many cases there would not be any meaningful
pointer to get so we would have pass nullptr. Now imagine that there were more metaobjects,
and potentially more pointers to pass around.

Having said this, we of course do not force anybody to use get_pointer when simply using the
ampersand operator directly would be enough.

Both cases are valid and again you should pick the most appropriate option for your situation.

10.5 All these additional options make it hard for the novices.

Q: This reflection proposal is too complex to be learned by beginning C++ programmers and the
novices might start to use unnecessarily complicated expressions to do simple things, like doing
get_pointer_v<$reflect(x)> instead of &x.

A: A novice could equally do:

double a[2];
*(a+int(-exp(complex<double>(0, M_PI)).real())) = 123.456;

instead of

double a[2];
a[1] = 123.456;

Doing mistakes is a part of being a beginner in something.

C++ is a complex36 language which means that the reflection mechanism also must be expressive
36No pun intended.
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enough to capture the complexity of the base-level. However we do expect that once static reflection
is available and the most common use cases are identified a more convenient and straightforward
façade will be added on top of it for simple and common things, while maintaining the usability of
reflection in more elaborate use cases.

10.6 Why are the metaobjects anonymous?

Q: Why should the metaobjects be anonymous types as opposed to types with well defined and
standardized names or concrete template classes, (possibly with some special kind of parameter
accepting different arguments than types and constants)?

A: We wanted to avoid defining a specific naming convention, because it would be difficult to do
so and very probably not user friendly (see C++ name mangling). There already are precedents
for anonymous types – for example C++ lambdas.

Another option would be to define a concrete set of template classes like:

namespace std {

template <typename T>
class meta_type /* Model of MetaType */
{ };

} // namespace std

which could work with types, classes, etc., but would not work with namespaces, constructors, etc.
(see also the Q/A above):

namespace std {

template <something X> // problem
class meta_constructor /* Model of Constructor */
{ };

template <something X> // problem
class meta_namespace /* Model of Namespace */
{ };

} // namespace std

typedef std::meta_namespace<std> meta_std; // problem

Instead of this, the metaobjects are anonymous and their (internal) identification is left to the
compiler. From the user’s point of view, the metaobject can be distinguished by the means of the
metaobject traits.
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10.7 Reflection violating access restrictions to class members?

Q: Why do you allow reflection to bypass the class member access restrictions? This is like giving
people nuclear weapons. I don’t want people to have nuclear weapons [sic].

A: This is a valid point, but there are several different ways to break access restrictions if the
programmer wants to and we feel that restricting reflection only to public class members would
severely limit its usefulness in implementing things like non-intrusive serialization, object-relational
mapping, etc.

Having said that we also try to design the interface to allow the users to indicate that they only
want the public data members, by providing two sets of operations where applicable (for example
get_data_members vs. get_public_data_members).

Furthermore the is_public trait can be used to test if a class member is publicly accessible or not.

10.8 We need to get around access restrictions, but not in reflection.

Q: OK, we understand that there are use cases where we need to get around access restrictions, but
why do this in reflection? Why don’t we use some other, unrelated, “magic” operator for that?

A: In our opinion if want37 to add a way of sneaking past access restrictions, then reflection is the
perfect place to do it.

Reflection is like a way to look at a program from a higher dimension, not perceivable from the
base-level itself. The access restrictions are in the base-level language for a reason and having to
go through the meta-level to get around them seems appropriate.

Another reason for not using an operator – a reserved identifier, is to avoid causing conflicts with
names in existing code.

10.9 Why do we need typedef reflection?

Q: Why is it necessary to distinguish between types and typedefs or type aliases on the meta-level
when they are not distinguishable on the base-level? Or why do we need to reflect on syntax rather
than just on semantics?

A: Our preferred answer is that it’s better to have more information then less. Being able to
distinguish typedefs or aliases on the meta-level, brings additional information about what the
programmer meant, not just how it is implemented;

• size_type vs. unsigned,

• rank_type vs. short,

• const_iterator vs. const Element*,

• height_cm vs. float,

• pid_t vs. int,

37and we do!
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• sighandler_t vs. void (*)(int),

• etc.

If we reflect on typedefs or aliases we still know the underlying types, the opposite is not true.

Having this information is important38 in several use cases.

• Debugging or trace messages (containing function signatures) are more readable and infor-
mative if they also contain the typedef names of parameter types, return values or variables,
not just their underlying types.

• Cross-platform serialization or remote procedure calls may require typedef names instead of
native type names which vary between platforms.

Having said this, we are aware of the compiler limitations in this area and we require the compilers
to reflect on type aliases only in the reasonable cases.

10.10 Why ObjectSequences? Why not replace them with typelists?

Q: Why do you define the ObjectSequence concept and its operations? There are type-lists
proposed for the inclusion into the standard, why not use those?

A: The reason why we use ObjectSequences is efficiency. Operations like get_data_members
are currently designed to return metaobjects – very lightweight types representing a whole set of
other metaobjects, without actually instantiating the elements eagerly, unlike typelists which would
require that all contained metaobjects are generated as a part of the definition of the typelist. There
are use cases where returning a typelist directly would be much less efficient than returning the
lightweight metaobject sequence.

For example the user might want to test a big set of classes and find those, which have a precise
number of members or find those which have multiple base classes or just get the metaobject
reflecting only the first39 data member of a class having hundreds of members:

get_element_t<get_data_members_t<$reflect(my_class)>, 0>;

This operation would involve the creation of two metaobjects:

1. the ObjectSequence and

2. the DataMember reflecting the first data member.

On the other hand if this operation returned a typelist of metaobjects, then all metaobjects would
have to be generated, even if most of them were not used afterwards.

What we can do is to add an operation converting a ObjectSequence into a typelist on demand,
which can be implemented trivially with the reflect::unpack_sequence template:

template <typename ... T>
struct type_list { /* ... */ };

38or at least very nice to have
39zero-th
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template <ObjectSequence MOS>
using convert_to_list = unpack_sequence<MOS, type_list>;

10.11 Why not reflect with constexpr instances of the same type?

Q: Why are the metaobjects implemented as distinct types and their interface as specializations of
templates? Why not provide the metadata as constexpr instances of the same type? Then we
could replace the metaobject sequences with arrays of constexpr instances and the templates with
constexpr functions. Wouldn’t the latter be more nice and efficient?

A: In other words why don’t we instead of:

using mo = $reflect(my_ns::my_class);

std::cout << reflect::get_base_name_v<mo> << std::endl;
std::cout << reflect::get_base_name_v<reflect::get_scope_t<mo>> << std::endl;
reflect::for_each<reflect::get_data_members_t<mo>>(my_func);

do something like one of the following:

A) reflect::object mo = $reflect(my_ns::my_class);

std::cout << reflect::get_base_name(mo) << std::endl;
std::cout << reflect::get_base_name(reflect::get_scope_t(mo)) << std::endl;
reflect::for_each(reflect::get_data_members_t(mo), my_func);

B) reflect::object mo = $reflect(my_ns::my_class);

std::cout << mo.get_base_name() << std::endl;
std::cout << mo.get_scope().get_base_name() << std::endl;
mo.get_data_members().for_each(my_func)
reflect::for_each(reflect::get_data_members(mo, my_func);

One of the reasons for the chosen representation of metaobjects and their interface was consistency
with the already existing type traits and the established practices in metaprogramming40.

Having said that, there is nothing preventing us to implement a façade with similar syntax as
either of the above41, on top of our chosen representation and we do plan to do that in the future.
“Niceness” is generally a matter of taste and we want to accommodate various programming styles.
See the various layers implemented by the Mirror reflection utilities [5], [1] for some examples.

In regard to efficiency, the types representing the metaobjects are very lightweight up to the point
of being comparable to compile-time constants. Also the representation which we have chosen
allows for a very fine granularity and metadata which are not queried don’t have to be generated
by the compiler. This may not be true if the metadata is represented as instances of constexpr
structures, which must be initialized or would require some “magic” implementation.

Also note that the metaobjects reflecting the various members of a scope42 can and will be heteroge-

40Yes we are aware of the Boost.Hana library and the metaprogramming paradigm which it brings.
41and even others
42 namespaces, native types, structured types, enumerations, functions, etc.
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neous. This means that we will either have to implement them only as homogeneous compile-time
identifiers and implement their interface with “magic” constexpr functions very similar to our
templates, or we cannot store them in an array.

Furthermore, representing metaobject sequences as arrays of such constexpr objects also requires
all of the metaobjects in the sequence to be instantiated even if only a few of them will actually be
used. See also the previous question for more details on this.

10.12 Why not return fully qualified names?

Q: Why doesn’t the get_base_name operation return fully qualified names instead of base names?

A: This is because it is much easier to generate full names from base names by using metapro-
gramming, than to do the reverse – to parse the base name from a fully qualified and decorated
name at compile-time.

Also there are several possibilities how the full name can be formatted; should it contain any white-
spaces, if so where and how many?, should the const and volatile qualifiers be put before or
after the type name?, should a complicated type name be split into several lines and indented, etc.

These details shouldn’t be handled by the basic reflection facility, but by a higher-level library. See
for example the Mirror reflection utilities [5].

10.13 What about the use cases from the committee’s CFP?

Q: How does this proposal handle the targeted use cases from the committee’s Call for Compile-Time
Reflection Proposals [9]?

A: Some of these use cases are discussed in the sections 5.3, 5.4 and 5.6 of this paper.
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template <typename T>

concept bool Object =

__is_metaobject ;

template <Object T>

concept bool ObjectSequence =

Object<T> ;

template <Object T>

concept bool Named =

Object<T> ;

template <Object T>

concept bool Alias =

Named<T> ;

template <Object T>

concept bool Typed =

Object<T> ;

template <Object T>

concept bool Scope =

Object<T> ;

template <Object T>

concept bool ScopeMember =

Object<T> ;

template <Object T>

concept bool RecordMember =

ScopeMember<T> &&

Record<get_scope<T>> ;

template <Object T>

concept bool Class =

Record<T> ;

template <Object T>

concept bool Enumerator =

ScopeMember<T> &&

Enum<get_scope<T>> ;

template <Object T>

concept bool Enum =

Type<T> &&

Scope<T> &&

ScopeMember<T> ;

template <Object T>

concept bool Namespace =

Named<T> &&

Scope<T> &&

ScopeMember<T> ;

template <Object T>

concept bool GlobalScope =

Namespace<T> &&

GlobalScope<get_scope<T>> ;

template <Object T>

concept bool Type =

Named<T> ;

template <Object T>

concept bool Record =

Type<T> &&

Scope<T> &&

ScopeMember<T> ;

template <Object T>

concept bool Constant =

Typed<T> ;

template <Object T>

concept bool Variable =

Named<T> &&

Typed<T> &&

ScopeMember<T> ;

template <Object T>

concept bool Base =

Object<T> ;

Figure 1: Metaobject concept hierarchy
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