Document Number: PO399R0

Audience: SG1 & LEWG

Date: 2017-10-15

Revises: None

Reply to: Gor Nishanov (gorn@microsoft.com)

Networking TS &
Threadpools

Exploring interactions between networking TS and
system threadpools.

Networking TS —io context

A brief overview of what
Networking TS offers ASYNC SOURCES
EXECUTION POLICY post
/ defer
1

thread 1
executor .

io_context::run() dispatch
thread 2

: - < async_accept

io_context::run() «——| io_context |+ socket \

\ async_connect

thread N async_read/write

io_context::run()

timer |« async_wait

io_context::stop()
io_context::stopped()

io_context::restart() .. (more async sources)

Threadpools & Networking TS 2

Simple io_context example

int main() {
io context io;

system timer slow_timer(io, hours(15));
slow timer.async wait([](auto) {
puts("Timer fired");

});

system timer fast_timer(io, seconds(l));
fast _timer.async _wait([&io](auto) {
io.stop();

})s

io.run();

Threadpools & Networking TS

Windows TP & GCD & Linux GCD*

Process 1

Process 2

Lib, || Lib,

Lib,,

Task Queues

Task Queues

User Mode

Process N

Task Queues

Kernel Mode

N

Thread Factories:
Observe I/0O completions
Threads getting blocked
Broker resources across processes
NUMA aware

Threadpools & Networking TS

Platforms have highly
efficient system
threadpools. We would
like to take advantage of
them with Networking TS

* Linux GCD does not yet have a
require kernel component and
thus not as efficient as native
OS X implementation

i0_context vs threadpool

* jo_context offers services similar to
GCD/libdispatch or Windows Threadpool, but

without thread creation policy (i.e. bring your own
thread)

* idea: introduce tp context as a representation of a
system threadpool usable with all async sources:
(sockets, timers, executors, etc) as io_context, but,
with different execution policies (no run(), poll(),
etc)

* possibly also, tp_private context(min-threads, max-

threads) which uses a private threadpool that does not
share threads with others.

Networkin

Idea: Same sources,
different execution model

EXECUTION POLICY

thread 1
thread 2 A

g IS+ tp context

executor

/

A

tp_context

<

Jadeuew sawnuny/so

thread N

tp_context::async_join(cb)
tp_context::cancel()
tp_context::cancelling()

ASYNC SOURCES
post
/ defer
. dispatch
< async accept
socket yne_ P

:i async_connect
async_read/write

A

timer

async_wait

... (more async sources)

Threadpools & Networking TS

Simple tp context example

int main() {
tp_context tp;

system timer slow_timer(tp, hours(15));
slow_timer.async wait([](auto) {
puts("Timer fired");

});

system timer fast_timer(tp, seconds(l));
fast timer.async wait([&tp](auto) {

tp.cancel();
}); Keeps the usage
very similar to how
L. Networking TS
tp.join(); work today.

Threadpools & Networking TS 7

l0_context VS tp context

io_context

tp_context

get_executor()

stop()
stopped()

restart()

run()

run_for(rel_time)
run_until(abs_time)
run_one()
run_one_for(rel_time)
run_one_until(abs_time)
poll()

poll_one()

get_executor()

cancel()

async_join(cb)

Possible interface

of tp_context

Threadpools & Networking TS

tp contexts are purely work

trackers

join/cancel only affect work
issued through a particular
tp_context.

e

Process

Component 1

Component 2

tp_context

tp_context

A 4

No control over actual
threadpool threads.

Component N

tp_context

A

OS Threadpool / Process Wide TP

/

Threadpools & Networking 15

Could be hierarchical.
Cancellation/Task Lifetime domains

tp_context tp3(tp2);

tp_context tp4(tp2);

A

tp_context tp5(tp);

tp_context tp2(tp);

Can act as cancellation/task
lifetime domains.

Can cancel or join leaves,
or subtrees without
affecting others.

A

tp_context tp;

tp_context tp6;

OS Threadpool / Process Wide TP

Threadpools & Networking TS

L

10

More tp contexts?

tp_raw_context

get_executor()

Maybe. If you never
cancel, join and exit your

program with exit(0)

tp_context

get_executor()

cancel()

async_join(cb)

tp_suspendable_context

get_executor()

cancel()

Only if having
suspend/resume adds

overhead. Otherwise those

could be part of tp_context
Threadpools & Networking TS

async_join(cb)

suspend()
resume()

Ha
(3

How 1o Integrate tp context Iinto
Networking TS

* Make loContext template parameter:

* most flexible
* most disruptive to existing users (deduction guides helps only
with trivial examples)

* Make io_context a base class with two concrete
implementations:

e tp_context (join/cancel)
e ijo_context_runner (which has run(), poll(), etc)

* Make io_context switch the behavior based on ctor

* io_context(system_ threadpool t)
* io_context(private_threadpool_t, min, max)
* io_context(io_context&) —hierarchival

* - run/poll/etc become less meaningful if run by the
threadpool

Conclusion

* A longer paper to come if this general direction
deemed promising.

