
p0408r0 - Efficient Access to basic stringbuf’s Buffer

Peter Sommerlad

2016-07-01

Document Number: p0408r0

Date: 2016-07-01

Project: Programming Language C++

Audience: LWG/LEWG

1 Motivation

Streams have been the oldest part of the C++ standard library and their specification
doesn’t take into account many things introduced since C++11. One of the oversights is
that there is no non-copying access to the internal buffer of a basic_stringbuf which
makes at least the obtaining of the output results from an ostringstream inefficient,
because a copy is always made. I personally speculate that this was also the reason why
basic_strbuf took so long to get deprecated with its char * access.

With move semantics and basic_string_view there is no longer a reason to keep
this pessimissation alive on basic_stringbuf.

2 Introduction

This paper proposes to adjust the API of basic_stringbuf and the corresponding
stream class templates to allow accessing the underlying string more efficiently.

C++17 and library TS have basic_string_view allowing an efficient read-only ac-
cess to a contiguous sequence of characters which I believe basic_stringbuf has to
guarantee about its internal buffer, even if it is not implemented using basic_string

obtaining a basic_string_view on the internal buffer should work sidestepping the
copy overhead of calling str().

On the other hand, there is no means to construct a basic_string and move from it
into a basic_stringbuf via a constructor or a move-enabled overload of str(basic_-
string &&).

3 Acknowledgements

• Daniel Krügler encouraged me to pursue this track.

1

2 p0408r0 2016-07-01

4 Impact on the Standard

This is an extension to the API of basic_stringbuf, basic_stringstream, basic_-
istringstream, and basic_ostringstream class templates.

5 Design Decisions

After experimentation I decided that substituting the (basic_string<charT,traits,Allocator
const &) constructors in favor of passing a basic_string_view would lead to ambigu-
ities with the new move-from-string constructors.

5.1 Open Issues to be Discussed by LEWG / LWG

• Is the name of the str_view() member function ok?

• Should the str()&& overload be provided for move-out?

• Should str()&& empty the character sequence or leave it in an unspecified but
valid state?

6 Technical Specifications

The following is relative to n4594.

6.1 27.8.2 Adjust synopsis of basic stringbuf [stringbuf]

Add a new constructor overload:

explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,

ios_base::openmode which = ios_base::in | ios_base::out);

Change the const-overload of str() member function to add a reference qualifica-
tion. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add two overloads of the str() member function and add the str_view() member
function:

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> str() &&;

basic_string_view<charT, traits> str_view() const;

p0408r0 2016-07-01 3

6.1.1 27.8.2.1 basic stringbuf constructors [stringbuf.cons]

Add the following constructor specification:

explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,

ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringbuf, initializing the base class
with basic_streambuf() (27.6.3.1), and initializing mode with which. Then calls
str(std::move(s)).

6.1.2 27.8.2.3 Member functions [stringbuf.members]

Change the const-overload of str() member function specification to add a reference
qualification. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Change p1 to use plural for ”str(basic_string) member functions”:

1 Returns: A basic_string object whose content is equal to the basic_stringbuf

underlying character sequence. If the basic_stringbuf was created only in in-
put mode, the resultant basic_string contains the character sequence in the
range [eback(),egptr()). If the basic_stringbuf was created with which &

ios_base::out being true then the resultant basic_string contains the char-
acter sequence in the range [pbase(),high_mark), where high_mark represents
the position one past the highest initialized character in the buffer. Characters
can be initialized by writing to the stream, by constructing the basic_stringbuf

with a basic_string, or by calling one of the str(basic_string) member func-
tions. In the case of calling one of the str(basic_string) member functions, all
characters initialized prior to the call are now considered uninitialized (except for
those characters re-initialized by the new basic_string). Otherwise the basic_-

stringbuf has been created in neither input nor output mode and a zero length
basic_string is returned.

Add the following specifications and adjust the wording of str() const & according
to the wording given for str_view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

2 Effects: Moves the content of s into the basic_stringbuf underlying character
sequence and initializes the input and output sequences according to mode.

3 Postconditions: Let size denote the original value of s.size() before the move.
If mode & ios_base::out is true, pbase() points to the first underlying character
and epptr() >= pbase() + size holds; in addition, if mode & ios_base::ate

4 p0408r0 2016-07-01

is true, pptr() == pbase() + size holds, otherwise pptr() == pbase() is true.
If mode & ios_base::in is true, eback() points to the first underlying character,
and both gptr() == eback() and egptr() == eback() + size hold.

basic_string<charT, traits, Allocator> str() &&;

4 Returns: A basic_string object moved from the basic_stringbuf underlying
character sequence. If the basic_stringbuf was created only in input mode,
basic_string(eback(), egptr()-eback()). If the basic_stringbuf was cre-
ated with which & ios_base::out being true then basic_string(pbase(), high_-

mark-pbase()), where high_mark represents the position one past the highest
initialized character in the buffer. Characters can be initialized by writing to the
stream, by constructing the basic_stringbuf with a basic_string, or by calling
one of the str(basic_string) member functions. In the case of calling one of the
str(basic_string) member functions, all characters initialized prior to the call
are now considered uninitialized (except for those characters re-initialized by the
new basic_string). Otherwise the basic_stringbuf has been created in neither
input nor output mode an empty basic_string is returned.

5 Postcondition: The underlying character sequence is empty.

basic_string_view<charT, traits> str_view() const;

6 Returns: A basic_string_view object referring to the basic_stringbuf un-
derlying character sequence. If the basic_stringbuf was created only in in-
put mode, basic_string_view(eback(), egptr()-eback()). If the basic_-

stringbuf was created with which & ios_base::out being true then basic_-

string_view(pbase(), high_mark-pbase()), where high_mark represents the
position one past the highest initialized character in the buffer. Characters can be
initialized by writing to the stream, by constructing the basic_stringbuf with a
basic_string, or by calling one of the str(basic_string) member functions. In
the case of calling one of the str(basic_string) member functions, all characters
initialized prior to the call are now considered uninitialized (except for those char-
acters re-initialized by the new basic_string). Otherwise the basic_stringbuf

has been created in neither input nor output mode a basic_string_view referring
to an empty range is returned.

7 [Note: Using the returned object after destruction or any modification of *this,
such as output on the holding stream, will cause undefined behavior, because the
internal string referred by the return value might have changed or re-allocated.
— end note]

p0408r0 2016-07-01 5

6.2 27.8.3 Adjust synopsis of basic istringstream
[istringstream]

Add a new constructor overload:

explicit basic_istringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in);

Change the const-overload of str() member function to add a reference qualifica-
tion. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add an overload of the str() member function and add the str_view() member
function:

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> str() &&;

basic_string_view<charT, traits> str_view() const;

6.2.1 27.8.3.1 basic istringstream constructors [istringstream.cons]

Add the following constructor specification:

explicit basic_istringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_istringstream<charT, traits>,
initializing the base class with basic_istream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which | ios_base::in))

(27.8.2.1).

6.2.2 27.8.3.3 Member functions [istringstream.members]

Change the const-overload of str() member function specification to add a reference
qualification. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add the following specifications and adjust the wording of str() const according
to the wording given for str_view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

1 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

6 p0408r0 2016-07-01

2 Returns: std::move(*rdbuf()).str().

basic_string_view<charT, traits> str_view() const;

3 Returns: rdbuf()->str_view().

6.3 27.8.4 Adjust synopsis of basic ostringstream
[ostringstream]

Add a new constructor overload:

explicit basic_ostringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::out);

Change the const-overload of str() member function to add a reference qualifica-
tion. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add an overload of the str() member function and add the str_view() member
function:

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> str() &&;

basic_string_view<charT, traits> str_view() const;

6.3.1 27.8.4.1 basic ostringstream constructors [ostringstream.cons]

Add the following constructor specification:

explicit basic_ostringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ostringstream<charT, traits>,
initializing the base class with basic_ostream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which | ios_base::out))

(27.8.2.1).

6.3.2 27.8.4.3 Member functions [ostringstream.members]

Change the const-overload of str() member function specification to add a reference
qualification. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

p0408r0 2016-07-01 7

Add the following specifications and adjust the wording of str() const according
to the wording given for str_view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

1 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

2 Returns: std::move(*rdbuf()).str().

basic_string_view<charT, traits> str_view() const;

3 Returns: rdbuf()->str_view().

6.4 27.8.5 Adjust synopsis of basic stringstream
[stringstream]

Add a new constructor overload:

explicit basic_stringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in | ios_base::out);

Change the const-overload of str() member function to add a reference qualifica-
tion. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add an overload of the str() member function and add the str_view() member
function:

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> str() &&;

basic_string_view<charT, traits> str_view() const;

6.4.1 27.8.4.1 basic stringstream constructors [stringstream.cons]

Add the following constructor specification:

explicit basic_stringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringstream<charT, traits>, ini-
tializing the base class with basic_stream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which)) (27.8.2.1).

8 p0408r0 2016-07-01

6.4.2 27.8.4.3 Member functions [stringstream.members]

Change the const-overload of str() member function specification to add a reference
qualification. This avoids ambiguities with the rvalue-ref overload of str().

basic_string<charT,traits,Allocator> str() const &;

Add the following specifications and adjust the wording of str() const according
to the wording given for str_view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

1 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

2 Returns: std::move(*rdbuf()).str().

basic_string_view<charT, traits> str_view() const;

3 Returns: rdbuf()->str_view().

7 Appendix: Example Implementations

The given specification has been implemented within a recent version of the sstream
header of gcc6. Modified version of the headers and some tests are available at

https://github.com/PeterSommerlad/SC22WG21 Papers/tree/master/workspace/Test -
basic stringbuf efficient/src.

Here are some definitions taken from there:

// basic stringbuf:
explicit

basic_stringbuf(__string_type&& __str,

ios_base::openmode __mode = ios_base::in | ios_base::out)

: __streambuf_type(), _M_mode(), _M_string(std::move(__str))

{ _M_stringbuf_init(__mode); }

using __string_view_type=experimental::basic_string_view<_CharT,_Traits>;

__string_view_type str_view() const {

__string_view_type __ret{};

if (this->pptr()) {

// The current egptr() may not be the actual string end.
if (this->pptr() > this->egptr())

__ret = __string_view_type(this->pbase(), this->pptr()-this->pbase());

else

__ret = __string_view_type(this->pbase(), this->egptr()-this->pbase());

}

p0408r0 2016-07-01 9

else {

__ret = _M_string;

}

return __ret;

}

void

str(__string_type&& __s)

{

_M_string.assign(std::move(__s));

_M_stringbuf_init(_M_mode);

}

//basic istringstream
explicit

basic_istringstream(__string_type&& __str,

ios_base::openmode __mode = ios_base::in)

: __istream_type(), _M_stringbuf(std::move(__str), __mode | ios_base::in)

{ this->init(&_M_stringbuf); }

using __string_view_type=experimental::basic_string_view<_CharT,_Traits>;

__string_view_type

str_view() const

{ return _M_stringbuf.str_view(); }

void

str(__string_type&& __s)

{ _M_stringbuf.str(std::move(__s)); }

//basic ostringstream
explicit

basic_ostringstream(__string_type&& __str,

ios_base::openmode __mode = ios_base::out)

: __ostream_type(), _M_stringbuf(std::move(__str), __mode | ios_base::out)

{ this->init(&_M_stringbuf); }

using __string_view_type=experimental::basic_string_view<_CharT,_Traits>;

__string_view_type

str_view() const

{ return _M_stringbuf.str_view(); }

void

str(__string_type&& __s)

{ _M_stringbuf.str(std::move(__s)); }

//basic stringstream
explicit

basic_stringstream(__string_type&& __str,

ios_base::openmode __m = ios_base::out | ios_base::in)

: __iostream_type(), _M_stringbuf(std::move(__str), __m)

{ this->init(&_M_stringbuf); }

using __string_view_type=experimental::basic_string_view<_CharT,_Traits>;

__string_view_type

str_view() const

10 p0408r0 2016-07-01

{ return _M_stringbuf.str_view(); }

void

str(__string_type&& __s)

{ _M_stringbuf.str(std::move(__s)); }

