p0448r0 - A strstream replacement using span<charl> as
buffer

Peter Sommerlad

2016-10-14

Document Number: p0448r0 | (N2065 done right?)
Date: 2016-10-14
Project: Programming Language C++
Audience: LWG/LEWG
1 History

Streams have been the oldest part of the C++ standard library and especially strstreams
that can use pre-allocated buffers have been deprecated for a long time now, waiting for
a replacement. p0407 and p0408 provide the efficient access to the underlying buffer
for stringstreams that strstream provided solving half of the problem that strstreams
provide a solution for. The other half is using a fixed size pre-allocated buffer, e.g.,
allocated on the stack, that is used as the stream buffers internal storage.

A combination of external-fixed and internal-growing buffer allocation that strstream-
buf provides is IMHO a doomed approach and very hard to use right.

There had been a proposal for the pre-allocated external memory buffer streams
in N2065 but that went nowhere. Today, with span<T> we actually have a library
type representing such buffers views we can use for specifying (and implementing) such
streams. They can be used in areas where dynamic (re-)allocation of stringstreams is
not acceptable but the burden of caring for a pre-existing buffer during the lifetime of
the stream is manageable.

2 Introduction

This paper proposes a class template basic_spanbuf and the corresponding stream
class templates to enable the use of streams on externally provided memory buffers.
No ownership or re-allocation support is given. For those features we have string-based
streams.

2 p0448r0 2016-10-14

3 Acknowledgements

e Thanks to those ISO C+4 meeting members attending the Oulu meeting encouring
me to write this proposal. I believe Neil and Pablo have been among them, but
can’t remember who else.

e Thanks go to Jonathan Wakely who pointed the problem of strstream out to me
and to Neil Macintosh to provide the span library type specification.

e Thanks to Felix Morgner for proofreading.

4 Motivation

To finally get rid of the deprecated strstream in the C++ standard we need a replace-
ment. p0407/p0408 provide one for one half of the needs for strstream. This paper
provides one for the second half: fixed sized buffers.

[Ezample: reading input from a fixed pre-arranged character buffer:

char input[] = "10 20 30";
ispanstream is{span<char>{input}};
int 1i;

is >> 1i;
ASSERT_EQUAL(10,1) ;

is >> i ;
ASSERT_EQUAL(20,1) ;

is >> i;
ASSERT_EQUAL(30,1) ;

is >>i;

ASSERT(!is);

— end exzample| [Ezample: writing to a fixed pre-arranged character buffer:

char output[30]1{}; // zero-initialize array

ospanstream os{span<char>{output}};

0os << 10 << 20 << 30 ;

auto const sp = os.span();

ASSERT_EQUAL(6,sp.size());

ASSERT_EQUAL("102030",std: :string(sp.data(),sp.size()));
ASSERT_EQUAL(static_cast<void#*>(output),sp.data()); // no copying of underlying data!
ASSERT_EQUAL ("102030",output); // initialization guaranteed NUL termination

— end example |

5 Impact on the Standard

This is an extension to the standard library to enable deletion of the deprecated strstream
classes by providing basic_spanbuf, basic_spanstream, basic_ispanstream, and basic_-

p0448r0 2016-10-14 3

ospanstream class templates that take an object of type span<charT> which provides
an external buffer to be used by the stream.

6 Design Decisions

6.1 General Principles

6.2 Open Issues to be Discussed by LEWG / LWG

e Should arbitrary types as template arguments to span be allowed to provide the
underlying buffer by using the byte sequence representation span provides. (I do
not think so, but someone might have a usecase.)

e Should the basic_spanbuf be copy-able? It doesn’t own any resources, so copying
like with handles or span might be fine.

7 Technical Specifications

Insert a new section 27.x in chapter 27 after section 27.8 [string.streams]

7.1 27.x Span-based Streams [span.streams]

This section introduces a stream interface for user-provided fixed-size buffers.

7.1.1 27.x.1 Overview [span.streams.overview]

The header <spanstream> defines four class templates and eight types that associate
stream buffers with objects of class span as described in [span].

namespace std {
namespace experimental {
template <class charT, class traits = char_traits<charT> >
class basic_spanbuf;
typedef basic_spanbuf<char> spanbuf;
typedef basic_spanbuf<wchar_t> wspanbuf;
template <class charT, class traits = char_traits<charT> >
class basic_ispanstream;
typedef basic_ispanstream<char> ispanstream;
typedef basic_ispanstream<wchar_t> wispanstream;
template <class charT, class traits = char_traits<charT> >
class basic_ospanstream;
typedef basic_ospanstream<char> ospanstream;
typedef basic_ospanstream<wchar_t> wospanstream;

4 p0448r0 2016-10-14

template <class charT, class traits = char_traits<charT> >
class basic_spanstream;

typedef basic_spanstream<char> spanstream;

typedef basic_spanstream<wchar_t> wspanstream;

3

7.2 27.x.2 Class template basic_spanbuf [spanbuf]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_spanbuf
: public basic_streambuf<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 17, constructors:
template <ptrdiff_t Extent>
explicit basic_spanbuf (

span<charT, Extent> span,

ios_base::openmode which = ios_base::in | ios_base::out);
basic_spanbuf (const basic_spanbuf& rhs) = delete;
basic_spanbuf (basic_spanbuf&& rhs) noexcept;

// ??, assign and swap:

basic_spanbuf& operator=(const basic_spanbuf& rhs) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;
void swap(basic_spanbuf& rhs) noexcept;

// 72, get and set:
span<charT> span() const noexcept;
void span(span<charT> s) noexcept;

protected:
// ??, overridden virtual functions:
int_type underflow() override;
int_type pbackfail(int_type ¢ = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;
basic_streambuf<charT, traits>* setbuf (charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base: :openmode which
= jios_base::in | ios_base::out) override;
pos_type seekpos(pos_type sp,

p0448r0 2016-10-14 5

ios_base: :openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base: :openmode mode; // exposition only

};

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,
basic_spanbuf<charT, traits>& y) noexcept;

}

1 The class basic_spanbuf is derived from basic_streambuf to associate possibly the
input sequence and possibly the output sequence with a sequence of arbitrary characters.
The sequence is provided by an object of class span<charT>.

2 For the sake of exposition, the maintained data is presented here as:

e ios_base: :openmode mode, has in set if the input sequence can be read, and out
set if the output sequence can be written.

7.3 27.x.2.1 basic_spanbuf constructors [spanbuf.cons]

template <ptrdiff_t Extent>
explicit basic_spanbuf (
basic_span<charT, Extent> s,
ios_base: :openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_spanbuf, initializing the base class
with basic_streambuf () (??), and initializing mode with which. Initializes the
internal pointers as if calling span(s).

basic_spanbuf (basic_spanbuf&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. Both basic_spanbuf objects share
the same underlying span. The sequence pointers in *this (eback(), gptr(),
egptr (), pbase (), pptr (), epptr()) obtain the values which rhs had. The open-
mode, locale and any other state of rhs is also copied.

3 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction.

e span() == rhs_p.span()
e eback() == rhs_p.eback()

6 p0448r0 2016-10-14

e gptr() == rhs_p.gptr(Q)
e egptr() == rhs_p.egptr()
e pbase() == rhs_p.pbase()

pptr() == rhs_p.pptr()

epptr() == rhs_p.epptr()

7.3.1 27.x.2.2 Assign and swap [spanbuf.assign]
basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;

Effects: After the move assignment *this has the observable state it would have
had if it had been move constructed from rhs (see 77).

Returns: *this.

void swap(basic_spanbuf& rhs) noexcept;

Effects: Exchanges the state of *this and rhs.

template <class charT, class traits, class Allocator>
void swap(basic_spanbuf<charT, traits>& x,
basic_spanbuf<charT, traits>& y) noexcept;

Effects: As if by x.swap(y).

7.3.2 27.x.2.3 Member functions [spanbuf.members]
span<charT> span() const;

Returns: A span object representing the basic_spanbuf underlying character
sequence. If the basic_spanbuf was created only in output mode, the resultant
span represents the character sequence in the range [pbase(), pptr()), otherwise
in the range [eback(), egptr()). [Note: In constrast to basic_stringbuf the
underlying sequence can never grow and will not be owned. An owning copy can
be obtained by converting the result to basic_string<charT>. — end note]

template<ptrdiff_t Extent>
void span(span<charT,Extent> s);

p0448r0 2016-10-14 7

Effects: Initializes the basic_spanbuf underlying character sequence with s and
initializes the input and output sequences according to mode.

Postconditions: If mode & ios_base::out is true, pbase() points to the first
underlying character and epptr() >= pbase() + s.size() holds; in addition,
if mode & ios_base::ate is true, pptr() == pbase() + s.size() holds, other-
wise pptr() == pbase() istrue. If mode & ios_base::inis true, eback() points
to the first underlying character, and both gptr() == eback() and egptr() ==
eback() + s.size() hold.

[Note: Using append mode does not make sense for span-based streams. — end
note |

7.3.3 27.x.2.4 Overridden virtual functions [spanbuf.virtuals]

[Note: Since the underlying buffer is of fixed size, neither overflow, underflow or
pbackfail can provide useful behavior. — end note |

int_type underflow() override;

Returns: traits::eof ().

int_type pbackfail(int_type c = traits::eof()) override;

Returns: traits::eof ().

int_type overflow(int_type ¢ = traits::eof()) override;

Returns: traits::eof ().

pos_type seekoff (off_type off, ios_base::seekdir way,
ios_base: :openmode which
= ios_base::in | ios_base::out) override;

Effects: Alters the stream position within one of the controlled sequences, if pos-
sible, as indicated in Table ?77.

For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a
null pointer and the new offset newoff is nonzero, the positioning operation fails.
Otherwise, the function determines newoff as indicated in Table 77.

8 p0448r0 2016-10-14

7 If (newoff + off) < O, or if newoff + off refers to an uninitialized character
outside the span (as defined in ?? paragraph 1), the positioning operation fails.
Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.

8 Returns: pos_type (newoff), constructed from the resultant offset newoff (of type
off_type), that stores the resultant stream position, if possible. If the positioning
operation fails, or if the constructed object cannot represent the resultant stream
position, the return value is pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base: :openmode which
= ios_base::in | ios_base::out) override;

9 Effects: Equivalent to seekoff (off_type(sp), ios_base::beg, which).

10 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT, traits>* setbuf (charT* s, streamsize n);

11 Effects: If s and n denote a non-empty span this->span(span<charT>(s,n));

12 Returns: this.

7.4 27.x.3 Class template basic_ispanstream [ispanstream]

namespace std {
template <class charT, class traits = char_traits<charT>>
class basic_ispanstream
: public basic_istream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// T.4.1, constructors:
template <ptrdiff_t Extent>
explicit basic_ispanstream(

span<charT, Extent> span,

ios_base: :openmode which = ios_base::in);
basic_ispanstream(const basic_ispanstream& rhs) = delete;
basic_ispanstream(basic_ispanstream&& rhs) noexcept;

p0448r0 2016-10-14 9

// 1.4.2, assign and swap:

basic_ispanstream& operator=(const basic_ispanstream& rhs) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs) noexcept;
void swap(basic_ispanstream& rhs) noexcept;

// 7.4.3, members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>
void span(span<charT> s) noexcept;
private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,
basic_ispanstream<charT, traits>& y) noexcept;

3

The class basic_ispanstream<charT, traits> supportsreading objects of class span<charT,
traits>. It uses a basic_spanbuf<charT, traits> object to control the associated
span. For the sake of exposition, the maintained data is presented here as:

e sb, the spanbuf object.

7.4.1 27.x.3.1 basic_ispanstream constructors [ispanstream.cons]

template <ptrdiff_t Extent>
explicit basic_ispanstream(
span<charT, Extent> span,
ios_base: :openmode which = ios_base::in);

Effects: Constructs an object of class basic_ispanstream<charT, traits>, ini-
tializing the base class with basic_istream(&sb) and initializing sb with basic_-
spanbuf<charT, traits>span, which | ios_base::in) (77).

basic_ispanstream(basic_ispanstream&& rhs);

Effects: Move constructs from the rvalue rhs. This is accomplished by move
constructing the base class, and the contained basic_spanbuf. Next basic_-
istream<charT, traits>::set_rdbuf (&sb) is called to install the contained basic_-
spanbuf.

3

10 p0448r0 2016-10-14

7.4.2 27.x.3.2 Assign and swap [ispanstream.assign]
basic_ispanstream& operator=(basic_ispanstream&& rhs);

Effects: Move assigns the base and members of *this from the base and corre-
sponding members of rhs.

Returns: *this.

void swap(basic_ispanstream& rhs);

Effects: Exchanges the state of *this and rhs by calling basic_istream<charT,
traits>::swap(rhs) and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_ispanstream<charT, traits, Allocator>& x,
basic_ispanstream<charT, traits, Allocator>& y);

Effects: As if by x.swap(y).

7.4.3 27.x.3.3 Member functions [ispanstream.members]
basic_spanbuf<charT>* rdbuf () const noexcept;

Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

Returns: rdbuf) ->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

Effects: Calls rdbuf ()->span(s).

p0448r0 2016-10-14 11

7.5 27.x.4 Class template basic_ospanstream
[ospanstream)|

namespace std {
template <class charT, class traits = char_traits<charT>>
class basic_ospanstream
: public basic_ostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 7.5.1, constructors:
template <ptrdiff_t Extent>
explicit basic_ospanstream(

span<charT, Extent> span,

ios_base::openmode which = ios_base::out);
basic_ospanstream(const basic_ospanstream& rhs) = delete;
basic_ospanstream(basic_ospanstream&& rhs) noexcept;

// 1.5.2, assign and swap:

basic_ospanstream& operator=(const basic_ospanstream& rhs) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;
void swap(basic_ospanstream& rhs) noexcept;

// 1.5.8, members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>
void span(span<charT> s) noexcept;
private:
basic_spanbuf<charT, traits> sb; /V’exposﬁion only

};

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,
basic_ospanstream<charT, traits>& y) noexcept;

1 The class basic_ospanstream<charT, traits> supports writing to objects of class
span<charT, traits>. It uses a basic_spanbuf<charT, traits> object to control
the associated span. For the sake of exposition, the maintained data is presented here
as:

e sb, the spanbuf object.

4

12 p0448r0 2016-10-14

7.5.1 27.x.4.1 basic_ospanstream constructors [ospanstream.cons]

template <ptrdiff_t Extent>

explicit basic_ospanstream(
span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

Effects: Constructs an object of class basic_ospanstream<charT, traits>, ini-

tializing the base class with basic_ostream(&sb) and initializing sb with basic_-
spanbuf<charT, traits>span, which | ios_base::out) (?7).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

Effects: Move constructs from the rvalue rhs. This is accomplished by move
constructing the base class, and the contained basic_spanbuf. Next basic_-

ostream<charT, traits>::set_rdbuf (&sb) is called to install the contained basic_-

spanbuf.

7.5.2 27.x.4.2 Assign and swap [ospanstream.assign|

basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;

Effects: Move assigns the base and members of *this from the base and corre-
sponding members of rhs.

Returns: *this.

void swap(basic_ospanstream& rhs) noexcept;

Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT,
traits>::swap(rhs) and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_ospanstream<charT, traits, Allocator>& x,
basic_ospanstream<charT, traits, Allocator>& y) noexcept;

Effects: As if by x.swap(y).

p0448r0 2016-10-14

7.5.3 27.x.4.3 Member functions [ospanstream.members]
basic_spanbuf<charT>* rdbuf() const noexcept;

Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

Returns: rdbuf)->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

Effects: Calls rdbuf () ->span(s).

7.6 27.x.5 Class template basic_spanstream [spanstream]

namespace std {
template <class charT, class traits = char_traits<charT>>
class basic_spanstream
: public basic_iostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;

using traits_type traits;
// 7.6.1, constructors:
template <ptrdiff_t Extent>
explicit basic_spanstream(

span<charT, Extent> span,

ios_base: :openmode which = ios_base::out);
basic_spanstream(const basic_spanstream& rhs) = delete;
basic_spanstream(basic_spanstream&& rhs) noexcept;

// 7.6.2, assign and swap:

basic_spanstream& operator=(const basic_spanstream& rhs) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;
void swap(basic_spanstream& rhs) noexcept;

// 7.6.3, members:

13

14 p0448r0 2016-10-14

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>
void span(span<charT> s) noexcept;
private:
basic_spanbuf<charT, traits> sb; /Q/ewposﬁion only

};

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,
basic_spanstream<charT, traits>& y) noexcept;

}

The class basic_spanstream<charT, traits> supports reading from and writing to
objects of class span<charT, traits>. It uses a basic_spanbuf<charT, traits> ob-
ject to control the associated span. For the sake of exposition, the maintained data is
presented here as:

e sb, the spanbuf object.

7.6.1 27.x.5.1 basic_spanstream constructors [spanstream.cons]

template <ptrdiff_t Extent>
explicit basic_spanstream(
span<charT, Extent> span,
ios_base::openmode which = ios_base::out | ios_bas::in);

Effects: Constructs an object of class basic_spanstream<charT, traits>, ini-

tializing the base class with basic_iostream(&sb) and initializing sb with basic_-
spanbuf<charT, traits>span, which) (77).

basic_spanstream(basic_spanstream&& rhs) noexcept;

Effects: Move constructs from the rvalue rhs. This is accomplished by move
constructing the base class, and the contained basic_spanbuf. Next basic_-

istream<charT, traits>::set_rdbuf (&sb) is called to install the contained basic_-

spanbuf.

7.6.2 27.x.5.2 Assign and swap [spanstream.assign]

basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;

p0448r0 2016-10-14 15

1 Effects: Move assigns the base and members of *this from the base and corre-
sponding members of rhs.

2 Returns: *this.

void swap(basic_spanstream& rhs) noexcept;

3 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT,
traits>::swap(rhs) and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_spanstream<charT, traits, Allocator>& x,
basic_spanstream<charT, traits, Allocator>& y) noexcept;

4 Effects: As if by x.swap(y).

7.6.3 27.x.5.3 Member functions [spanstream.members]
basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf ()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf () ->span(s).

8 Appendix: Example Implementations

An example implementation will become available under the author’s github account at:
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_
basic_spanbuf

