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This document is based on WG21/P0279R1 combined with feedback at
the 2015 Kona and 2016 Jacksonville meetings, which most notably called for
a C++-style method of handling different RCU implementations or domains
within a single translation unit, and which also contains useful background mate-
rial and references. Unlike WG21/P0279R1, which simply introduced RCU’s C-
language practice, this document presents proposals for C++-style RCU APIs.
At present, it appears that these are not conflicting proposals, but rather ways
of handling different C++ use cases resulting from inheritance, templates, and
different levels of memory pressure. This document also incorporates content
from WG21/P0232R0[4].

Note that this proposal is related to the hazard-pointer proposal in that
both proposals defer destructive actions such as reclamation until all readers
have completed. See P0233R3, which updates “P0233R2: Hazard Pointers: Safe
Resource Reclamation for Optimistic Concurrency” at http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2016/p0233r2.pdf.

Note also that a redefinition of the infamous memory order consume is the
subject of two separate papers:

1. P0190R3, which updates “P0190R2: Proposal for New memory order

consume Definition”, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2016/p0190r2.pdf.

2. P0462R1, which updates “P0462R0: Marking memory order consume De-
pendency Chains”, http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2016/p0462r0.pdf.

Draft wording for this proposal may be found in the new working paper
“P0566R0: Proposed Wording for Concurrent Data Structures: Hazard Pointer
and Read-Copy-Update (RCU)”.

A detailed change log appears starting on page 12.
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1 void std::rcu_read_lock();
2 void std::rcu_read_unlock();
3 void std::synchronize_rcu();
4 void std::call_rcu(struct std::rcu_head *rhp,
5 void cbf(class rcu_head *rhp));
6 void std::rcu_barrier();
7 void std::rcu_register_thread();
8 void std::rcu_unregister_thread();
9 void std::rcu_quiescent_state();

10 void std::rcu_thread_offline();
11 void std::rcu_thread_online();

Figure 1: Existing C-Language RCU API

1 Introduction

This document proposes C++ APIs for read-copy update (RCU). For more
information on RCU, including RCU semantics, see WG21/P0462R0 (“Marking
memory order consume Dependency Chains”), WG21/P0279R1 (“Read-Copy
Update (RCU) for C++”), WG21/P0190R2 (“Proposal for New memory order

consume Definition”), and WG21/P0098R1 (“Towards Implementation and Use
of memory order consume”).

Specifically, this document proposes rcu domain (Figure 2), rcu guard (Fig-
ure 3), and rcu obj base (Figure 4).

Section 2 presents the base (C-style) RCU API, Section 3 presents a proposal
for scoped RCU readers, Section 4 presents proposals for handling of RCU call-
backs (with that of Section 4.1 being the preferred implementation), Section 5
presents a table comparing reference counting, hazard pointers, and RCU, and
finally Section 6 presents a summary.

2 Existing C-Language RCU API

Figure 1 shows the existing C-language RCU API as provided by implementa-
tions such as userspace RCU [1, 3]. This API is provided for compatibility with
existing C-language practice as well as to provide the highest performance for
fast-path code. (See Figure 2 for a proposed API that permits multiple RCU
domains, as requested by several committee members.)

Lines 1 and 2 show rcu read lock() and rcu read unlock(), which mark
the beginning and the end, respectively, of an RCU read-side critical section.
These primitives may be nested, and matching rcu read lock() and rcu read

unlock() calls need not be in the same scope. (That said, it is good practice
to place them in the same scope in cases where the entire critical section fits
comfortably into one scope.)

Line 3 shows synchronize rcu(), which waits for any pre-existing RCU
read-side critical sections to complete. The period of time that synchronize

rcu() is required to wait is called a grace period. Note that a given call to
synchronize rcu() is not required to wait for critical sections that start later.
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Lines 4 and 5 show call rcu(), which, after a subsequent grace period
elapses, causes the cbf(rhp) RCU callback function to be invoked. Thus,
call rcu() is the asynchronous counterpart to synchronize rcu(). In most
cases, synchronize rcu() is easier to use, however, call rcu() has the ben-
efit of moving the grace-period delay off of the updater’s critical path. Use of
call rcu() is thus critically important for good performance of update-heavy
workloads, as has been repeatedly discovered by any number of people new to
RCU [2].

Note that although call rcu()’s callbacks are guaranteed not to be invoked
too early, there is no guarantee that their execution won’t be deferred for a con-
siderable time. This can be a problem if a given program requires that all
outstanding RCU callbacks be invoked before that program terminates. The
rcu barrier() function shown on line 6 is intended for this situation. This
function blocks until all callbacks corresponding to previous call rcu() invo-
cations have been invoked and also until after those invocations have returned.
Therefore, taking the following steps just before terminating a program will
guarantee that all callbacks have completed:

1. Take whatever steps are required to ensure that there are no further in-
vocations of call rcu().

2. Invoke rcu barrier().

Carrying out this procedure just prior to program termination can be very
helpful for avoiding false positives when using tools such as valgrind.

Many RCU implementations require that every thread announce itself to
RCU prior to entering the first RCU read-side critical section, and to announce
its departure after exiting the last RCU read-side critical section. These tasks
are carried out via the rcu register thread() and rcu unregister thread(),
respectively.

The implementations of RCU that feature the most aggressive implemen-
tations of rcu read lock() and rcu read unlock() require that each thread
periodically pass through a quiescent state, which is announced to RCU using
rcu quiescent state(). A thread in a quiescent state is guaranteed not to
be in an RCU read-side critical section. Threads can also announce entry into
and exit from extended quiescent states, for example, before and after blocking
system calls, using rcu thread offline() and rcu thread online().

2.1 RCU Domains

The userspace RCU library features several RCU implementations, each opti-
mized for different use cases.

The quiescent-state based reclamation (QSBR) implementation is intended
for standalone applications where the developers have full control over the en-
tire application, and where extreme read-side performance and scalability is
required. Applications use #include "urcu-qsbr.hpp" to select QSBR and
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1 class rcu_domain {
2 public:
3 constexpr explicit rcu_domain() noexcept { };
4 rcu_domain(const rcu_domain&) = delete;
5 rcu_domain(rcu_domain&&) = delete;
6 rcu_domain& operator=(const rcu_domain&) = delete;
7 rcu_domain& operator=(rcu_domain&&) = delete;
8 virtual void register_thread() = 0;
9 virtual void unregister_thread() = 0;

10 static constexpr bool register_thread_needed() { return true; }
11 virtual void quiescent_state() noexcept = 0;
12 virtual void thread_offline() noexcept = 0;
13 virtual void thread_online() noexcept = 0;
14 static constexpr bool quiescent_state_needed() { return false; }
15 virtual void read_lock() noexcept = 0;
16 virtual void read_unlock() noexcept = 0;
17 virtual void synchronize() noexcept = 0;
18 virtual void retire(rcu_head *rhp, void (*cbf)(rcu_head *rhp)) = 0;
19 virtual void barrier() noexcept = 0;
20 };

Figure 2: RCU Domain Base Class

-lurcu -lurcu-qsbr to link to it. These applications must use rcu register

thread() and rcu unregister thread() to announce the coming and going
of each thread that is to execute rcu read lock() and rcu read unlock().
They must also use rcu quiescent state(), rcu thread offline(), and rcu

thread online() to announce quiescent states to RCU.
The memory-barrier implementation is intended for applications that can

announce threads (again using rcu register thread() and rcu unregister

thread()), but for which announcing quiescent states is impractical. Such ap-
plications use #include "urcu-mb.hpp" and -lurcu-mb to select the memory-
barrier implementation. Such applications will incur the overhead of a full
memory barrier in each call to rcu read lock() and rcu read unlock().

The signal-based implementation represents a midpoint between the QSBR
and memory-barrier implementations. Like the memory-barrier implementa-
tion, applications must announce threads, but need not announce quiescent
states. On the one hand, readers are almost as fast as in the QSBR im-
plementation, but on the other applications must give up a signal to RCU,
by default SIGUSR1. Such applications use #include "urcu-signal.hpp" and
-lurcu-signal to select signal-based RCU.

So-called “bullet-proof RCU” avoids the need to announce either threads or
quiescent states, and is therefore the best choice for use by libraries that might
well be linked with RCU-oblivious applications. The penalty is that rcu read

lock() incurs both a memory barrier and a test and rcu read unlock() incurs
a memory barrier. Such applications or libraries use #include urcu-bp.hpp

and -lurcu-bp.
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1 class rcu_guard {
2 public:
3 rcu_guard() noexcept
4 {
5 this->rd = nullptr;
6 rcu_read_lock();
7 }
8
9 explicit rcu_guard(rcu_domain *rd)

10 {
11 this->rd = rd;
12 rd->read_lock();
13 }
14
15 rcu_guard(const rcu_guard &) = delete;
16
17 rcu_guard&operator=(const rcu_guard &) = delete;
18
19 ~rcu_guard() noexcept
20 {
21 if (this->rd)
22 this->rd->read_unlock();
23 else
24 rcu_read_unlock();
25 }
26
27 private:
28 rcu_domain *rd;
29 };

Figure 3: RCU Guarded Readers

2.2 Run-Time Domain Selection

Figure 2 shows the abstract base class for runtime selection of RCU domains.
Each domain creates a concrete subclass that implements its RCU APIs:

• Bullet-proof RCU: class rcu bp

• Memory-barrier RCU: class rcu mb

• QSBR RCU: class rcu qsbr

• Signal-based RCU: class rcu signal

Of course, additional implementations of RCU may be constructed by de-
riving from rcu domain and/or by implementing the API shown in Figure 1.

3 RCU Guarded Readers

In some cases, it might be convenient to use a guard style for RCU readers,
especially if the read-side critical section might be exited via exception. The
rcu guard class shown in Figure 3 may be used for this purpose. An argument-
less constructor uses the API, or an rcu domain class may be passed to the
constructor to use the specified RCU implementation.

This is intended to be used in a manner similar to std::lock guard.
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4 RCU Callback Handling

The traditional C-language RCU callback uses address arithmetic to map from
the rcu head structure to the enclosing struct, for example, via the container

of() macro. Of course, this approach also works for C++, but this section
first looks at some approaches that leverage C++ overloading and inheritance,
which has the benefit of avoiding macros and providing better type safety. This
will not be an either-or situation: Several of these approaches are likely to be
generally useful.

However, the approach discussed in Section 4.1 is the preferred approach,
and is compatible with the proposal for hazard pointers. The approaches in
the other sections are presented for informational purposes: Section 4.2 uses a
pointer to an enclosing type and Section 4.3 uses address arithmetic (illustrating
the C-language approach used in the Linux kernel).

4.1 Derived-Type Approach

The rcu obj base class provides overloaded retire() methods, as shown in
Figure 4. These methods take a deleter and an optional rcu domain class in-
stance. The deleter’s operator() is invoked after a grace period. The deleter type
defaults to std::default delete<T>, but one could also use a custom functor
class with an operator() that carries out teardown actions before freeing the
object, or a raw function pointer type such as void(*)(T*), or a lambda type.
We recommend avoiding deleter types such as std::function<void(T*)> (and
also any other type requiring memory allocation) because allocating memory on
the free path can result in out-of-memory deadlocks.

If an rcu domain is supplied, its retire() member function is used, other-
wise the call rcu() free function is used.

The next section provides a specialization that only permits delete, which
allows omitting the deleter, thus saving a bit of memory.

4.2 Pointer To Enclosing Class

If complex inheritance networks make inheriting from an rcu head derived type
impractical, one alternative is to maintain a pointer to the enclosing class as
shown in Figure 5. This rcu head ptr class is included as a member of the
RCU-protected class. The rcu head ptr class’s pointer must be initialized, for
example, in the RCU-protected class’s constructor.

If the RCU-protected class is foo and the name of the rcu head ptr member
function is rh, then foo1.rh.retire(my cb) would cause the function my cb()

to be invoked after the end of a subsequent grace period. As with the previous
classes, omitting the deleter results in the object being passed to delete and
an rcu domain object may be specified.
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1 template<typename T,
2 typename D = default_delete<T>,
3 bool E = is_empty<D>::value>
4 class rcu_obj_base: private rcu_head {
5 D deleter;
6 public:
7 static void trampoline(rcu_head *rhp)
8 {
9 auto rhdp = static_cast<rcu_obj_base *>(rhp);

10 auto obj = static_cast<T *>(rhdp);
11 rhdp->deleter(obj);
12 }
13
14 void retire(D d = {})
15 {
16 deleter = d;
17 call_rcu(static_cast<rcu_head *>(this), trampoline);
18 }
19
20 void retire(rcu_domain &rd, D d = {})
21 {
22 deleter = d;
23 rd.retire(static_cast<rcu_head *>(this), trampoline);
24 }
25 };
26
27 template<typename T, typename D>
28 class rcu_obj_base<T,D,true>: private rcu_head {
29 public:
30 static void trampoline(rcu_head *rhp)
31 {
32 auto rhdp = static_cast<rcu_obj_base *>(rhp);
33 auto obj = static_cast<T *>(rhdp);
34 D()(obj);
35 }
36
37 void retire(D d = {})
38 {
39 call_rcu(static_cast<rcu_head *>(this), trampoline);
40 }
41
42 void retire(rcu_domain &rd, D d = {})
43 {
44 rd.retire(static_cast<rcu_head *>(this), trampoline);
45 }
46 };

Figure 4: RCU Callbacks: Derived-Type Approach
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1 template<typename T>
2 class rcu_head_ptr: public rcu_head {
3 public:
4 rcu_head_ptr()
5 {
6 this->container_ptr = nullptr;
7 }
8
9 rcu_head_ptr(T *containing_class)

10 {
11 this->container_ptr = containing_class;
12 }
13
14 static void trampoline(rcu_head *rhp)
15 {
16 T *obj;
17 rcu_head_ptr<T> *rhdp;
18
19 rhdp = static_cast<rcu_head_ptr<T> *>(rhp);
20 obj = rhdp->container_ptr;
21 if (rhdp->callback_func)
22 rhdp->callback_func(obj);
23 else
24 delete obj;
25 }
26
27 void retire(void callback_func(T *obj) = nullptr)
28 {
29 this->callback_func = callback_func;
30 call_rcu(static_cast<rcu_head *>(this), trampoline);
31 }
32
33 void retire(class rcu_domain &rd,
34 void callback_func(T *obj) = nullptr)
35 {
36 this->callback_func = callback_func;
37 rd.retire(static_cast<rcu_head *>(this), trampoline);
38 }
39
40 private:
41 void (*callback_func)(T *obj);
42 T *container_ptr;
43 };

Figure 5: RCU Callbacks: Pointer
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1 template<typename T>
2 class rcu_head_container_of {
3 public:
4 static void set_field(const struct rcu_head T::*rh_field)
5 {
6 T t;
7 T *p = &t;
8
9 rh_offset = ((char *)&(p->*rh_field)) - (char *)p;

10 }
11
12 static T *enclosing_class(struct rcu_head *rhp)
13 {
14 return (T *)((char *)rhp - rh_offset);
15 }
16
17 private:
18 static inline size_t rh_offset;
19 };
20
21 template<typename T>
22 size_t rcu_head_container_of<T>::rh_offset;

Figure 6: RCU Callbacks: Address Arithmetic

1 void my_cb(struct std::rcu_head *rhp)
2 {
3 struct foo *fp;
4
5 fp = std::rcu_head_container_of<struct foo>::enclosing_class(rhp);
6 std::cout << "Callback fp->a: " << fp->a << "\n";
7 }

Figure 7: RCU Callbacks: Address Arithmetic in Callback

4.3 Address Arithmetic

Figure 6 shows an approach that can be used if memory is at a premium and the
inheritance techniques cannot be used. The set field() method sets the offset
of the rcu head container of member within the enclosing RCU-protected
structure, and the enclosing class() member function applies that offset to
translate a pointer to the rcu head container of member to the enclosing
RCU-protected structure.

This address arithmetic must be carried out in the callback function, as
shown in Figure 7.

5 Hazard Pointers and RCU: Which to Use?

Table 1 provides a rough summary of the relative advantages of reference count-
ing, RCU, and hazard pointers. Advantages are marked in bold with green
background, or with a blue background for strong advantages.

Although reference counting has normally had quite limited capabilities and
been quite tricky to apply for general linked data-structure traversal, given a
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double-pointer-width compare-and-swap instruction, it can work quite well, as
shown in the “Reference Counting with DCAS” column.

As a rough rule of thumb, for best performance and scalability, you should
use RCU for read-intensive workloads and hazard pointers for workloads that
have significant update rates. As another rough rule of thumb, a significant
update rate has updates as part of more than 10% of its operations. Refer-
ence counting with DCAS is well-suited for small systems and/or low read-side
contention, and particularly on systems that have limited thread-local-storage
capabilities. Both RCU and reference counting with DCAS allow unconditional
reference acquisition.

Specialized workloads will have other considerations. For example, small-
memory multiprocessor systems might be best-served by hazard pointers, while
the read-mostly data structures in real-time systems might be best-served by
RCU.

The relationship between the Hazard Pointers proposal and this RCU pro-
posal is as follows:

1. The hazptr obj base class is analogous to rcu obj base.

2. The hazptr domain class is analogous to rcu domain.

3. The private hazptr obj class is analogous to the pre-existing rcu head

struct. Because this is a private hazard-pointers class, there is no need to
have compatible names.

4. There is no RCU class analogous to hazptr rec because RCU does not
track (or need to track) references to individual RCU-protected objects.

5. There is no hazard pointers counterpart to the rcu guard class. This is
because hazard pointers does not have (or need) a counterpart to rcu

read lock() and rcu read unlock().

6 Summary

This paper demonstrates a way of creating C++ bindings for a C-language
RCU implementation, which has been tested against the userspace RCU li-
brary. Specifically, this document proposes rcu domain (Figure 2), rcu guard

(Figure 3), and rcu obj base (Figure 4). We believe that these bindings are also
appropriate for the type-oblivious C++ RCU implementations that information-
hiding considerations are likely to favor.
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