
Document: P0466R2
Date: 2018-03-29
Reply-to: Lisa Lippincott <lisa.e.lippincott@gmail.com>
Audience: Evolution; LEWG; LWG

Layout-compatibility and Pointer-interconvertibility Traits

Lisa Lippincott

Abstract

Over dinner at CppCon, Marshall Clow and I discussed a bit of code that relied on two types being
layout-compatible. As it happened, the types weren’t layout-compatible after all. I opined that there
should be a way to statically assert layout-compatibility, so that the error would be caught at compile
time, rather than dinner time. Marshall replied, “Write a proposal.” This is that proposal.

In addition to a test for layout-compatibility, I propose tests for correspondence in the initial common
sequence of two types, and for situations in which objects are pointer-interconvertible.

Changes from r1 to r2: These changes are based on feedback in the second Core discussion at Jacksonville,
2018-03-16. Each of these changves is more directly relative to the draft presented there.

• Adding wording to insist on complete types as arguments to the traits.

• Correcting the order of template parameters in the synopsis of is corresponding member.

• When describing is pointer interconvertible with class, writing of each object in the singular.
On my own initiative, likewise changing is pointer interconvertible base of.

• Changing “happily fails” to “fails, as desired.”

These changes are based on feedback in the first Core discussion at Jacksonville, 2018-03-13.

• Rewriting the abstract and much of the front matter to remove incorrect blather about reinterpret cast.
Instead, I’ve tried to restrict the text to mostly true statements.

• Restoring the constexpr functions from revision 0, as core-preferred alternatives to the traits in revision
1. The traits wording is kept and updated as an alternative.

• Renaming pointer-interconvertibility tests to express their function, rather than their mechanism, and
changing their definitions to refer to core definitions, rather than mimic core definitions.

is initial base of → is pointer interconvertible base of

is initial member → is pointer interconvertible with class

This renaming more directly expresses the intent of these facilities, simplifies their wording, and allows
them to track future changes in core wording.

More generally, it is better to say what one means, rather than say what means what one means.

• Using phrases, rather than declarator syntax, when naming pointer-to-member types.

• Rebasing on draft n4713 of the standard.

• Correction of various typographic errors.

These changes are on my own initiative:

• Moving the enclosing-class template parameters of is corresponding member to the front of the pa-
rameter list, for use with explicit template arguments.

1

• Removing the increasingly-pointless requirement that the functions be ill-formed when applied to
pointers to member functions. They can return false instead.

• Consolidating the notes about pointer to member literals.

• Adding v definitions to the synopses where needed.

Changes from r0 to r1: These changes are based on the Library Evolution discussion at Kona in 2017.
First, renaming the plural traits:

are layout compatible → is layout compatible

are common members → is corresponding member
Second, changing is initial member and is corresponding member from constexpr functions to ordi-

nary traits using template <auto>. My thanks go to Louis Dionne for the sample implementation code.
On my own initiative, I have added a discussion and notes on the dangers of deducing the containing

type from a member pointer constant.

1 Introduction

Currently, a program may rely on layout-compatibility, but cannot assert that the layout-compatibility it
relies upon pertains. Even when a programmer carefully verifies layout-compatibility, a future change to the
types involved may break the compatibility, silently introducing a bug.

A compiler, having full information about the types, can easily check layout-compatibility. But the
compiler currently has no way to determine which types need to be layout-compatible. This gap can be
bridged straightforwardly with a type trait expressing the layout-compatibility relationship:

template <class T, class U> struct is_layout_compatible;

Using this trait, a function may statically assert the layout-compatibility it relies upon.
Delving deeper into the problem, I found another situation where a programmer might rely on a fact

about the type system that can’t be asserted: the pointer-interconvertiblity of an object and an initial base
or member subobject. A simple type trait handles the base subobject case:

template <class Base, class Derived>

struct is_pointer_interconvertible_base_of;

The initial member subobject case turns out to be trickier. The test should take a member pointer as a
parameter:

template <class S, class M, M S::*m>

struct is_pointer_interconvertible_with_class;

That works, but with three template parameters, it’s really cumbersome. In use, the first two parameters
are redundant — the type of m determines S and M. But, because this is a class template, the earlier parameters
can’t be inferred. A function template is easier to use:

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

The use of this function is a little more broad: it can be called in a non-constexpr context. An alternative
formulation retains the traits syntax, at the expense of this breadth:

template <auto m> struct is_pointer_interconvertible_with_class;

Such a trait can be implemented by forwarding decltype(m).

A similar situation can occur with layout-compatibility: a programmer may rely on particular members
of layout-compatible types overlaying each other. More generally, the overlap of the common initial sequence
of two types (12.2 [class.mem]) can only be relied upon if the programmer is sure that particular members
correspond. So I’m proposing a second function for testing correspondence in the common initial sequence:

2

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

As above, an alternative would be to stick to traits:

template <auto m1, auto m2> struct is_corresponding_member;

Note: There is a danger in deducing the type of the containing class from the type of a pointer-to-member
literal. Consider the following example:

struct A { int a; };

struct B { int b; };

struct C: public A, public B {};

static_assert(is_pointer_interconvertible_with_class(&C::b));

// Succeeds because, despite its appearance, &C::b has type

// "pointer to member of B of type int."

static_assert(is_pointer_interconvertible_with_class<C>(&C::b));

// Forces the use of class C, and happily fails.

static_assert(is_corresponding_member(&C::a, &C::b));

// Succeeds because, despite appearances, &C::a and &C::b have types

// "pointer to member of A of type int" and

// "pointer to member of B of type int," respectively.

static_assert(is_corresponding_member<C,C>(&C::a, &C::b));

// Forces the use of class C, and happily fails.

The awkwardness of the deduced type of pointer-to-member constants was discussed in core language issue
203; no action was taken for fear of breaking existing code.

2 is layout compatible

Add to table 40 in 23.15.6 [meta.rel]:

Template Condition Comments

template <class T, class U> struct

is layout compatible;

T and U are layout-compatible
(6.7 [basic.types])

T and U shall be com-
plete types.

Add to 23.15.2 [meta.type.synop], in the section corresponding to 23.15.6 [meta.rel]:

template <class T, class U> struct is_layout_compatible;

template<class T, class U>

inline constexpr bool is_layout_compatible_v

= is_layout_compatible<T,U>::value;

3 is pointer interconvertible base of

Add to table 44 in 23.15.6 [meta.rel]:

3

Template Condition Comments

template <class Base,

class Derived> struct

is pointer interconvertible base of;

Derived is unambiguously
derived from Base, and each
object of type Derived is
pointer-interconvertible (6.7.2
[basic.compound]) with its
Base subobject.

Base and Derived

shall be complete
types.

I note here that it may be possible to relax the requirement that Base be complete.

Add to 23.15.2 [meta.type.synop], in the section corresponding to 23.15.6 [meta.rel]:

template <class Base, class Derived>

struct is_pointer_interconvertible_base_of;

template<class Base, class Derived>

inline constexpr bool is_pointer_interconvertible_base_of_v

= is_pointer_interconvertible_base_of<Base,Derived>::value;

4 is pointer interconvertible with class

This pretty clearly belongs in <type traits> (23.15 [meta]), but I don’t see a clear choice of subsection
to put it in. Perhaps it goes in 23.15.6 [meta.rel], or perhaps a new subsection, “Member relationships” is
appropriate.

Wherever it fits, here is some text to add:

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

Requires: S shall be a complete type.
Returns: true if and only if each object s of type S is pointer-interconvertible (6.7.2 [basic.compound])

with its subobject s.*m.

Add to 23.15.2 [meta.type.synop], in the corresponding section:

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

5 is corresponding member

Add this text to the same subsection as is pointer interconvertible with class:

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

Requires: S1 and S2 shall be complete types.
Returns: true if and only if m1 and m2 point to corresponding members of the common initial

sequence (12.2 [class.mem]) of S1 and S2.

Add to 23.15.2 [meta.type.synop], in the corresponding section:

4

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

6 Note about pointer to member literals

To the same section as the functions above, add a note:

[Note: The type of a pointer-to-member literal is not always as it appears, and this may lead to
surprising results when using these functions in conjunction with inheritance in classes that are not
standard-layout. Consider the following example:

struct A { int a; };

struct B { int b; };

struct C: public A, public B {};

static_assert(is_pointer_interconvertible_with_class(&C::b));

// Succeeds because, despite its appearance, &C::b has type

// "pointer to member of B of type int."

static_assert(is_pointer_interconvertible_with_class<C>(&C::b));

// Forces the use of class C, and fails, as desired.

static_assert(is_corresponding_member(&C::a, &C::b));

// Succeeds because, despite appearances, &C::a and &C::b have types

// "pointer to member of A of type int" and

// "pointer to member of B of type int," respectively.

static_assert(is_corresponding_member<C,C>(&C::a, &C::b));

// Forces the use of class C, and fails, as desired.

—end note]

7 Alternative wording as traits

Instead of the above wording, is pointer interconvertible with class and is corresponding member

can be provided as traits. I favor the function approach above, largely because it allows the enclosing classes
to be easily specified as explicit template arguments. This wording replaces the wording in sections 4, 5,
and 6 above.

7.1 General wording for traits of non-type parameters

First, it is necessary to introduce general wording for traits of non-type parameters. Rather than duplicate
the already-duplicate requirements of UnaryTypeTrait and BinaryTypeTrait, I introduce the common notion
of IntegralTrait.

Modify 23.15.1 [meta.rqmts]:

An IntegralTrait describes a property of or relationship between template parameters. It shall be a
class template whose specializations are DefaultConstructible, CopyConstructible, and publicly and
unambiguously derived, directly or indirectly, from its base characteristic, which is a specialization of
the template integral constant (23.15.3), with the arguments to the template integral constant

determined by the requirements for the particular property or relationship being described. The mem-
ber names of the base characteristic shall not be hidden and shall be unambiguously available in the
IntegralTrait.

5

A UnaryTypeTrait is an IntegralTrait with one primary type parameter. A BinaryTypeTrait is an
IntegralTrait with two primary type parameters. In each case, other parameters of lesser importance
may be present.

A UnaryTypeTrait describes a property of a type. It shall be a class template that takes one template
type argument and, optionally, additional arguments that help define the property being described. It
shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously derived, directly or
indirectly, from its base characteristic, which is a specialization of the template integral constant

(23.15.3), with the arguments to the template integral constant determined by the requirements for
the particular property being described. The member names of the base characteristic shall not be
hidden and shall be unambiguously available in the UnaryTypeTrait.

A BinaryTypeTrait describes a relationship between two types. It shall be a class template that takes
two template type arguments and, optionally, additional arguments that help define the relationship
being described. It shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously
derived, directly or indirectly, from its base characteristic, which is a specialization of the template
integral constant (23.15.3), with the arguments to the template integral constant determined
by the requirements for the particular relationship being described. The member names of the base
characteristic shall not be hidden and shall be unambiguously available in the BinaryTypeTrait.

7.2 is pointer interconvertible with class trait

Add in place of the description of the is pointer interconvertible with class function above:

template <auto m> struct is_pointer_interconvertible_with_class;

An IntegralTrait with a BaseCharacteristic of true type if m has type “pointer to member of S of type
D,” D is an object type, and each object s of type S is pointer-interconvertible (6.7.2 [basic.compound])
with its subobject s.*m. Otherwise, the BaseCharacteristic is false type.

A program is ill-formed if it instantiates the definition of this template where S is incomplete.

Add to 23.15.2 [meta.type.synop], in place of the corresponding synopsis:

template <auto m>

struct is_pointer_interconvertible_with_class;

template<auto m>

inline constexpr bool is_pointer_interconvertible_with_class_v

= is_pointer_interconvertible_with_class<m>::value;

7.3 is corresponding member trait

Add in place of the description of the is corresponding member function above:

template <auto m1, auto m2> struct is_corresponding_member;

An IntegralTrait with a BaseCharacteristic of true type if m1 has type “pointer to member of S1 of
type D1,” m2 has type “pointer to member of S2 of type D2,” and m1 and m2 point to corresponding mem-
bers of the common initial sequence (12.2 [class.mem]) of S1 and S2. Otherwise, the BaseCharacteristic
is false type.

A program is ill-formed if it instantiates the definition of this template where S1 or S2 is incomplete.

Add to 23.15.2 [meta.type.synop], in place of the corresponding synopsis:

6

template <auto m1, auto m2>

struct is_corresponding_member;

template<auto m1, auto m2>

inline constexpr bool is_corresponding_member_v

= is_corresponding_member<m1,m2>::value;

7.4 Note about pointer to member literals, traits version

Add in place of the similar note above:

[Note: The type of a pointer-to-member literal is not always as it appears, and this may lead to surprising
results when using these traits in conjunction with inheritance in classes that are not standard-layout.
Consider the following example:

struct A { int a; };

struct B { int b; };

struct C: public A, public B {};

static_assert(is_pointer_interconvertible_with_class_v< &C::b >);

// Succeeds because, despite its appearance, &C::b has type

// "pointer to member of B of type int."

static_assert(is_corresponding_member_v< &C::a, &C::b >);

// Succeeds because, despite appearances, &C::a and &C::b have types

// "pointer to member of A of type int" and

// "pointer to member of B of type int," respectively.

—end note]

7

