
Doc No. P0488R0
Date: 2016-10-19

Project: Programming Language C++
Reply To: Barry Hedquist, beh@peren.com

Subject: WG21 Working Paper, NB Comments, ISO/IEC CD 14882

Attached is a WG21 Working Paper containing National Body Comments on ISO/IEC CD 14882,
Programming Language C++. These comments are identical to those submitted to ISO/IEC,
except that the comments are numbered, so we know what we are talking about. In the case of
the ANSI Comments, large excerpts in the “Proposed Change” column were redacted and
replaced with a hot link to the proposal ‘p’ paper. That was done for readability. In another
case, the Project Number was changed from something to 14882.

Thanks everyone,
Barry Hedquist
beh@peren.com

mailto:beh@peren.com

Template for comments and secretariat observations Date: 11/10/2016 Document: Project:ISO 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 2
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

ES 1 7.1.6 1,3 Te The proposed feature of inline variables goes
beyond the original problem to be solved. That is,
avoiding the need to provide a definition for any
static data member (constexpr or not) from a
class.

Remove inline variables from C++17.

Solve exclusively the multiple definitions of:

a) Constexpr data members
b) Static data members

ES 2 8.5 1 Te While structured bindings are a very useful
feature the latest syntax after last minute
modification make it more complex and less
uniform.

The use of bracktes may introduce problems with
attributes and lambdas

Reconsider the braces syntax instead of the
brackets syntax.

ES 3 D.1 1 Ed Example should use constexpr for variable
declaration.

Change:

struct A {
static constexpr int n = 5; // definition (declaration
in C++ 2014)
};
const int A::n; //

to:

struct A {
static constexpr int n = 5; // definition (declaration
in C++ 2014)
};
constexpr int A::n; //

ES 4 Ge Concepts is a highly relevant feature with field
experience.
We strongly support the introduction of Concepts
to C++17. If such introduction is considered
impossible, we suggest Concepts TS is
introduced at the beginning of the process for the

Adopt Concepts TS for C++17. Alternatively
consider introducing it in the draft for the next
standard.

Template for comments and secretariat observations Date: 11/10/2016 Document: Project:ISO 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 2
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

next standard.

ES 5 Ge Unified syntax call provides a simplification
mechanism and would allow simplifications to
many libraries.

Consider separately the two halves of unified
syntax call

ES 6 Ge Operator dot provides important benefits to
developers

Consider the introduction.

ES 7 Ge Default comparisons will allow the reduction of
boilerplate code.

Reconsider default comparisons or at least the
==/!= part.

ES 8 23.1.1
[container.n
ode] and
paragraphs
relating to
this in 23.1
[container].

 Te Node handles are an over-specified solution to
the relatively simple problem of moving nodes
between associative containers, which can be
done with a more conservative interface similar to
std::list::splice. There is a lack of consistency with
std::list, where splicing and merging can be done
but there is no node handle-based interface, yet
lists are indeed node based, too. P00832
acknowledges the simpler solution (by Talbot) but
dismisses it as it offered “no further advantages”:
however, the further advantages or use cases
node handles allegedly provide are not clear at
all.

Remove the changes proposed in P00382 and
settle on a more conservative interface akin to that
of std::list.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 1 [expr] (5)
and other clauses

 te The recent revisions to the rules for expression
evaluation order are proving to be far more
contentious than anticipated, and seem to be
adversely affecting consensus for adopting this
Committee Draft as the next C++ standard. See
P0145R3

See P0145R3

US 2 [expr] (5) and other clauses
amended by ISO/IEC TS
19717:2015

 te Independent of their applicability to Concepts, the
requires-clause and requires-expression parts of the
Concepts-Lite TS seem generally regarded as useful
and uncontroversial C++ language features. Adopting
these features now would reduce dissatisfaction with
the absence of Concepts-Lite from the CD, and
thereby improve consensus for its adoption.

Extract (from ISO/IEC TS 19717:2015) the wording
that specifies the syntax and semantics of the
requires-clause and requires-expression features.
Amend this wording pursuant to relevant issues list
resolutions and then apply the updated wording.

US 3 [expr.ass] (5.18) and/or other
clauses affected by P0145R3

 te It is very surprising that expressions such as the
following are required to have different outcomes
when the evaluations of a and b have overlapping
side effects:

• a @= b
• a.operator@=(b)

Ensure that such expression pairs are guaranteed to
provide identical results and side effects.
• Perhaps the simplest way to do so is to change in

¶1: “The right left operand is sequenced before
the left right operand.”

• Alternatively, restore the status quo ante.

US 4 [dcl.
decomp] (8.5)

¶3 ed When referring to a type trait’s value, the _v forms are
usually preferred.

Replace std::tuple_size<E>::value by
std::tuple_size_v<E>.

US 5 [over.binary] (13.5.2) ¶1 te Remove users’ need to write boilerplate code for
many or most of the comparison operators !=, >, <=,
and >=, while:
• Preserving backward compatibility for the Standard

Library as well as for all existing well-formed user
code, and

• Remaining faithful to the EqualityComparable and
LessThanComparable concepts (as promulgated,
for example, in SGI’s implementation of the STL).

Append to ¶1 (or add as new ¶2):
If neither form of the operator function has been
declared, then for each binary operator @ appearing
in the left column of Table n, x @ y shall instead be
reinterpreted as shown in the corresponding right
column entry.

Table n — Reinterpretation of selected binary
operators [reinterpretation]

Expression Reinterpretation
x != y !(x == y)
x > y y < x
x >= y !(x < y)
x <= y !(y < x)

US 6 [temp.deduct] (14.8.2) te Per [c++std-core-26539], “we're missing the core
wording for template argument deduction for partial

Provide the missing wording, thereby possibly also
resolving related open CWG issues such as 697 and

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

specializations.” This lack affects such code as the
detection idiom’s application of void_t, as exemplified
in the Library Fundamentals 2 TS.

2054.

US 7 All library Clauses te P0091R3 “Template argument deduction for class
templates (Rev. 6)” was adopted for the core
language, but the Standard Library makes no
explicit use of this new feature, even though the
promise of such use provided strong motivation for
the feature.

Analyze the Standard Library’s constructors to
determine which classes would profit from explicit
deduction guides. Formulate the appropriate guides
for those classes and insert them in their respective
types.

US 8 All library Clauses te The Standard Library mistakenly uses Requires:
clauses to express two distinct kinds of requirements:
some requirements can be statically checked, while
others can’t. We should insist on statically checked
requirements wherever possible, leading to an ill-
formed program when such a requirement is violated.

See p0411r0

US 9 [meta.type.
synop] (20.15.2)

Synopsis ed Unlike all other value-returning type traits, this
synopsis has no entry for
has_unique_object_representations_v.

See also the related comment re [meta.unary.prop]
(20.15.4.3).

Insert the missing entry, with the obvious definition,
following the entry for has_virtual_destructor_v.

US 10 [meta.type.
synop] (20.15.2)

¶1 te A user specialization of any type trait should produce
an ill-formed program, not merely one whose
behavior is unspecified.
See also the related comment re [execpol.
type] (20.19.3).

Reword the paragraph as follows:
Unless otherwise specified, a program that adds
specializations for any of the templates defined in
this subclause is ill-formed; no diagnostic required.

US 11 [meta.unary.prop]
(20.15.4.3)

Last row
of Table
38 and
also ¶9

ed For consistency with similar specifications,
has_unique_object_representations_v<T> should be
used in place of
has_unique_object_representations<T>
::value.

See also the related comment re [meta.type.synop]
(20.15.2).

Make the obvious replacements.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0411r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 12 [meta.unary.prop]
(20.15.4.3)

Table 38 ed The conditions for is_signed and is_unsigned
unnecessarily refer to bool_constant.

Remove bool_constant<>::value from these two
entries, leaving only the boolean expressions that
these tokens surround.

US 13 [meta.unary.prop]
(20.15.4.3)

Table 38 ed When referring to a type trait’s value, the _v forms are
usually preferred.

Replace std::is_destructible<T>::value by
std::is_destructible_v<T> throughout the affected
table cell.

US 14 [execpol.
type] (20.19.3)

¶3 te A user specialization of any type trait should produce
an ill-formed program, not merely one whose
behavior is unspecified.
See also the related comment re [meta.type.
synop] (20.15.2).

Reword the paragraph as follows:
Unless otherwise specified, a program that adds
specializations for is_execution_policy is ill-formed;
no diagnostic required.

US 15 25.2.4 2 te Calling 'std::terminate' when an element access
function exits via. an uncaught exception effectively
disables the normal means of C++ error handling and
propagation when using the parallel algorithms. This
will be both confusing to users and a common source
of bugs. Furthermore, by defining this behavior we
are essentially preventing further solutions to this
problem.

There are several solutions that would be
acceptable, among them:

1. Make it undefined behavior when an element
access function exits via. an uncaught exception.
This will allow for a future solution to this problem
that is backwards compatible.

2. When an element access function exits via. an
uncaught exception, throw a 'std::exception_list'
which represents a collection of exceptions that
were thrown in parallel.

3. When an element access function exits via. an
uncaught exception, throw an unspecified
'std::exception'.

4. Rename the parallel algorithms to clarify that
exception throwing code will result in a call to
'std::terminate'. For example
'std::exceution::parallel_policy' would be renamed to
'std::exceution::parallel_policy_noexcept' and
'std::execution::par' would be renamed to
'std::execution::par_noexcept'.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 16 25.2.5 2 te It is unclear what behavior a parallel algorithm will
have when a user-provided function exits via. an
uncaught exception. This statement seems to require
most parallel algorithms to nodeterministically choose
one of the exceptions thrown and then re-throw that
in the calling thread.

Clarify in section 25.2.5 what happens when a user-
provided function throws an exception.

US 17 25.2.5 2 te This statement seems to require most parallel
algorithms to nodeterministically choose one of the
exceptions thrown and then rethrow that in the calling
thread. In the case that multiple threads witness an
exception from a user-provided function, all but one of
those exceptions gets discarded. It is much
preferrable to have all exception data preserved.

When a user-provided function exits via. an
uncaught exception, throw a 'std::exception_list'
structure which represents a collection of exceptions
that were thrown in parallel.

US 18 [depr.except.spec] (D.3)
and other subclauses per
P0003r4

 te Dynamic exception specifications have long been
superseded, and are widely regarded as having been
a mistake. They have previously been deprecated; it’s
time to excise them.

Apply the proposed wording from p0003r4

US 19 13.3.1.8, 14.9
and Clauses 17-30
(all library clauses)

 te The Standard Library should be reviewed with the
purpose of ensuring it takes proper advantage of
template deduction for constructors.

• Review all classes in the standard library.
For some classes, no changes may be
required:
 std::complex c(2.1, 3.5); // Deduce
complex<double> by 14.9
In other cases, explicit deduction guides
may be necessary

 int i{5};
 std::tuple c(2.1, reference_wrapper(i)); //
Seems like it should behave like
make_tuple

The review should also consider whether
constructors in the standard library create
too much ambiguity, making it impossible
even with explicit guides to deduce the
parameters. If this happens, options such
as the following could be considered

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r4.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 1. Making it possible to remove an
implicit guide from the overload set
 2. Giving explicit guides precedence over
implicitly deduced guides
 3. Removing implicit guides from C++17

US 20 13.3.1.8, 14.9 TE As pointed out in P0091R3, T&& arguments in
constructors traditionally refer to rvalue references.

 template<class T> struct Wrapper
 {
 T value;
 Wrapper(T const& x): value(x) {}
 Wrapper(T && y): value(std::move(x)) {} // intent
is rvalue reference
 };
 int main() {
 std::string foo = "Hello";
 auto w = Wrapper(foo); // Error. Universal
reference is deduced
 }

While P0091R3 proposes that such cases can be
handled with explicit deduction guides, a more
transparent solution would be desirable

As an alternative to the approach in P0091R3,
consider whether implicit deduction guides should
use SFINAE to constrain to rvalue references like
was intended in the constructor.

US 21 te The “operator dot” functionality is missing from the
CD. It has been widely expected to be included in this
version of the standards.

Integrate the functionality as described in the latest
versions of P0416r0 and P0252r1

US 22 te The “std::byte” paper was reviewed and approved by
EWG for C++17. Its integration is missing from the
CD because it is awaiting a final review by LWG. This
feature increases type safety in C++.

See p0298r1
See p0137r1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0416r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0137r1.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 23 8.5 1 te The “structured bindings” proposal originally used
braces “{}” to delimit binding identifiers. Those
delimiters were changed to brackets “[]” under the
assertion that they didn’t introduce any syntactic
problem. However, they turned out to introduce
syntactic ambiguity with attributes and lambdas. In
the light of various suggested fixes, it appears the
original syntax is more adequate.

Change the delimiters to curly braces.

US 24 9.2.3.2 3 te The current specification prohibits constexpr static
data members that are of the same type as the
enclosing class. Example:
struct A {
 int val;
 static constexpr A cst = { 42 }; // error
};

int main() {
 Return A::cst.val;
}

Defer semantics processing of initializers of
constexpr static data members until the completion
of the scope of the enclosing class. Effectively
allowing this construct.

US 25 27.10.8.4.10 7 te has_filename() is equivalent to just !empty(). (So
remove_filename() fails its postcondition in its
examples.) The current definition of the relevant
predicate is useless and (therefore) ignored by the
functions that mention it.

Remove it, or reconsider after adjustments to
definition of filename() and remove_filename()
already discussed.

US 26 12.1 4 ed "either has no parameters" is (technically) redundant Rephrase as a parenthetical after the general case.

US 27 12.6.2 10 ed “side effects” in the example Remove space.

US 28 15.2 4 te depends on “principal constructor” being the
innermost one (the non-delegating constructor), but
§12.6.2¶6 defines “principal constructor” as the
outermost one (the non-target constructor)

Change the definition in §12.6.2¶6 to be the non-
delegating constructor.

US 29 20.8.3 2 te What does it mean for (the contained) objects to be
“equivalent”?

Add definition (note that using operator==()
involves complicated questions of overload
resolution).

US 30 26.8.7 2 ge It is highly unusual that the value of (what is for Call attention to the peculiarity (which can be useful

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

random access iterators) last-1 is unused; this
prohibits usage of an entire container (since
end()+1 is UB).

when the input iterators are not bidirectional).
Provide also the scan from Scala, where the output
range is one longer than the input.

US 31 27.10 ge It is unfortunate that everything is defined in terms of
one implicit host system (cf. Python's posixpath,
that can be imported anywhere); consider, for
example, the impediment to a test suite.

Possibly: add a template argument for selecting the
syntax, with (at least) POSIX and Windows
conventions defined.

US 32 27.10.2.1 3 ge What does it mean to not “provide behavior that is not
supported by a particular file system”? (Is it
permissible for the functions to not exist at all on an
implementation that expects to operate only with such
a file system?)

Clarify that ¶2 governs and an error must be
reported in such cases.

US 33 27.10.4.2 ge This definition is problematic: it is time-dependent,
needs permissions to verify, and conflicts with
“normal form” because it prohibits dot elements.

Remove entirely, since it is unused.

US 34 27.10.4.5 ge Are there attributes of a file that are not an aspect of
the file system?

State that all are included, or give examples of those
that may not be.

US 35 27.10.4.6 te What synchronization is required to avoid a file
system race? For many systems, the file system
itself is an important means of synchronization; if that
is not permitted, the entirety of §27.10 is useless for
many applications.

Specify the synchronization requirements, perhaps
the very weak ones from POSIX:
If a read() of file data can be proven (by any means)
to occur after a write() of the data, it must reflect that
write(), even if the calls are made by different
processes.

US 36 27.10.4.9 ge Symbolic links themselves are attached to a directory
via (hard) links.

Correct definitions; allow creating hard links “to”
(really “for”) symbolic links in §27.10.15.3¶3.4.3.

US 37 27.10.4.12 ge The term “redundant current directory (dot) elements”
is not defined.

Define it as, presumably, any dot element except the
special case of having one at the end as a directory
name marker.

US 38 27.10.4.13 ed duplicates §17.3.16 Remove.

US 39 27.10.4.15 (the note) ed dot and dot-dot are not directories (merely aliases for
some directory), so it is meaningless to say they have
no parent.

Remove the note.

US 40 27.10.4.15 ge Not all directories have a parent. Mention this, and perhaps cross-reference

http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

§27.10.8.1¶2 about /...

US 41 27.10.4.16 ed The term “parent directory” for a (non-directory) file is
unusual.

Use “containing directory” instead, perhaps in
§27.10.4.15 as well.

US 42 27.10.4.21 ed Pathname resolution does not always resolve a
symlink.

State this.

US 43 27.10.5 4 ge The “encoded character type” idea suggests that
paths are the result of encoding some character
sequence. Unfortunately, this is often untrue in
practice: Windows implementations typically use a
16-bit wchar_t that, in violation of §3.9.1¶5, is not
actually a character but a two-byte unit that nominally
stores results from the UTF-16 encoding but is
actually uninterpreted (significant for surrogate pairs).
Similarly, typical Linux implementations use 8-bit char
in expectation of, but without requiring, UTF-8
encoding. Directory separators are recognized
directly from these non-character representations, so
it is appropriate for applications to work directly with
the sequences of byte or two-byte units and perform
decoding as a further step if desired.

Remove suggestion that applications may rely on
decoding a path into a sequence of characters,
and that the exclusion of signed char and
unsigned char results from their failure to be an
encoding of anything. Warn for functions like
path::string() that the conversion may fail.

US 44 27.10.8 te The explicit definition of path in terms of a string
requires that the abstraction be leaky. Consider that
the meaning of the expression p+=’/’ has very
different behavior in the case that p is empty; that a
path can uselessly contain null characters; and that
iterators must be constant to avoid having to reshuffle
the packed string.

Define member functions to express a path as a
string, but define its state in terms of the abstract
sequence of components (including the leading
special components) already described by the
iterator interface. Remove members that rely on
arbitrary manipulation of a string value.

US 45 27.10.8.1 ge The portability of the generic format is compromised
by the unspecified root-name.

Place limits on the contents of a root-name, or
dispense with the generic format entirely in the
course of addressing the previous issue by
weakening the path-string connections.

US 46 27.10.8.1 ge filename can be empty, so the productions for
relative-path are redundant.

Simplify the grammar: perhaps drastically, since any
string matches by some sequence of name and
directory-separator productions.

US 47 27.10.8.1 ed “.” and “..” already match the name production. Exclude them from it, or else remove the
filename/name distinction.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 48 27.10.8.1 1 ge Multiple separators are often meaningful in a root-
name.

Limit the scope of the paragraph to the relative-path.

US 49 27.10.8.2.2 1.3, 1.4 ge What does “method of conversion method” mean? Reword.

US 50 27.10.8.3 1.4 ed largely redundant with ¶1.3 Remove; add “that after array-to-pointer decay” and
decay_t<Source> to ¶1.3.

US 51 27.10.8.4.3 2.3 te Failing to add a / when appending the empty string
constitutes a discontinuity (in the length of the output
as a function of the length of the inputs) and prevents
useful applications like forcing a symlink to be
resolved.

Follow the example of Python’s path.join().

US 52 27.10.8.4.5 5 te The postcondition is not by itself a definition, as
illustrated by the non-idempotent behaviour in the
example.

Add a definition.

US 53 27.10.8.4.5 7 te The “example behavior” does not correspond to the
function name, which suggests /foo/bar 
/foo/  /foo/.

Rename the function to remove_component(),
or alter it to follow Python’s path.dirname()
(including its treatment of /).

US 54 27.10.8.4.5 10 te The example demonstrates that this function is
broken (perhaps because the underspecified
remove_filename() is not the right thing). The
undesirable discontinuity of operator/=() is also
inherited.

Define in terms of improved and clarified versions of
the underlying functions.

US 55 27.10.8.4.5 11 ge This is the most egregious example (among many) of
using the type path inappropriately: replacement
is a string, not a path that might include things like
roots.

Use string_type for this and similar parameters.

US 56 27.10.8.4.5 11.2 ge The conditional addition of the period produces
a(nother) discontinuity; applications will have to
include the period anyway to support empty
extensions.

Never add a period.

US 57 27.10.8.4.8 2 ge On Windows, absolute paths will sort in among
relative paths.

Consider including the absoluteness of a path in its
sort key.

US 58 27.10.8.4.9 5 te The behavior for root paths is useless: “/” becomes “”
and (on Windows) “c:\\” becomes “c:” which is in no

Follow Python’s path.dirname(). If the purely
component-based definition is desired, give it a
name like most components() (inspired by the

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

way a parent of it. Wolfram Language).

US 59 27.10.8.4.9 6 te Again, using path for single path components is
bizarre.

Return string_type from this and other similar
functions (not including root_name() and
root_path(), which make sense as paths).

US 60 27.10.8.4.9 6 te path("/foo/").filename()==path(".")
is surprising.

Follow Python’s path.basename() and return
an empty string_type.

US 61 27.10.8.4.9 8 te Leading dots in filename() should not be taken to
begin an extension (e.g., .bashrc).

Follow Python’s path.splitext() in ignoring
them.

US 62 27.10.8.4.9 11 te It is important that
stem()+extension()==filename().

Require implementations to preserve this.

US 63 27.10.8.4.11 1 ge It is inconsistent to take a trailing / as indicative of a
directory but not a trailing /.., (which must refer to
one).

Append the /. in all cases known to name
directories (if it is in fact necessary).

US 64 all all all ge The present references to UCS2 in the Committee
Draft are appropriate in the interests of preventing
silent breakage of software written to older versions
of C++.

Preserve the references to UCS2 as presented in
the Committee Draft.

US 65 all all all ge The adoption of the changes proposed in WG21
document P0386R2 (inline variables) is a step in the
right direction.

Preserve the functionality as presented in the
Committee Draft.

US 66 all all all ge The adoption of the changes proposed in WG21
document P0292R2 (constexpr if-statements) is a
step in the right direction.

Preserve the functionality as presented in the
Committee Draft.

US 67 all all all ge Further consideration of the proposal known as
Operator Dot (in P0416R0, its predecessors, etc.) for
incorporation into the current new revision of IS
14882 is not desired. The topic was controversial
among the experts in WG21. The C++ community will
benefit if the feature is not rushed.

Limit the adoption of Operator Dot such that it may
only be incorporated in a later revision of 14882 (not
the revision of 14882 for which SC22 N5131 is a
Committee Draft ballot).

US 68 all all all ge Further consideration of the proposal known as
Unified Call Syntax (in P0301R1, its predecessors,
etc.) for incorporation into the current new revision of
IS 14882 is not desired. The topic was controversial
among the experts in WG21. The C++ community will

Limit the adoption of Unified Call Syntax such that it
may only be incorporated in a later revision of 14882
(not the revision of 14882 for which SC22 N5131 is
a Committee Draft ballot).

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0292r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0416r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0301r1.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

benefit if the feature is not rushed.

US 69 all all all ge Further consideration of the proposal known as
Default Comparisons (in P0221R2, its predecessors,
etc.) for incorporation into the current new revision of
IS 14882 is not desired. The topic was controversial
among the experts in WG21. The C++ community will
benefit if the feature is not rushed.

Limit the adoption of Default Comparisons such that
it may only be incorporated in a later revision of
14882 (not the revision of 14882 for which SC22
N5131 is a Committee Draft ballot).

US 70 all all all te The adoption of P0003R4 (Removing Deprecated
Exception Specifications) would reduce language
complexity and resolve all specification issues related
to its presence in the IS.

Adopt P0003R4.

US 71 all 7
[dcl.dcl]

paragraph
1

te The [identifier-list] syntax for decomposition
declarations has been reviewed for grammar
ambiguities, and is likely to be less problematic in the
face of future evolution than the case where curly
braces “{ }” are adopted in place of the square
brackets.

Preserve the syntax of decomposition declarations
as presented in the Committee Draft.

US 72 all 1.8
[intro.object]

Para 3 te The introduction of additional special behavior for
unsigned char in contexts where it may already occur
in programs today is harmful to the optimization which
may be obtained.

Adopt std::byte (P0257R1) with necessary changes
from WG21 review and modify
1.8 [intro.object] paragraph 3 by replacing “array of
N unsigned char” with “array of N std::byte”.

US 73 all 27.10.8.1
[path.generic]

all te root-name is effectively implementation defined. As
acknowledged by the note under root-name in the
grammar, // is an example of what a root-name may
be.

Should root-name be // for a specific implementation,
the grammar is ambiguous.

The string //a may resolve as either

root-name root-directoryopt relative-pathopt
//root-directoryopt relative-pathopt
//relative-pathopt
//filename

Change under root-name in the grammar of
subclause 27.10.8.1 [path.generic]:

An implementation defined path prefix operating
system dependant name that identifies the starting
location for absolute paths.

Add a new paragraph before paragraph 1 of
[path.generic]:

The root-name in a pathname is the longest
sequence of characters that could possibly form a
root-name.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0257r1.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

//name
//a

or

root-directory relative-pathopt
directory-separator relative-pathopt
slash directory-separator relative-pathopt
slash directory-separator relative-pathopt
/directory-separator relative-pathopt
/slash relative-pathopt
//relative-pathopt
//filename
//name
//a

US 74 all 27.10.8

[class.path]

all te The term “pathname” in 27.10.8 [class.path] is

ambiguous in some contexts.

Add the following specification to 27.10.8.2.1
[path.fmt.cvt]:

Specifications for path appends, path concatenation,
path modifiers, path decomposition and path query
are in terms of the generic pathname format. An
implementation needs to make whatever changes
necessary to the pathname in native pathname
format to produce the specified change in the
generic pathname format, or return query result for
pathname in terms of the generic pathname format.

See p0430r0 Section 2.1

US 75 all 27.10.8.4.1
[path.construct]

all te Extra flag in path constructors is needed to

distinguish whether source is in native pathname

format, or generic pathname format.

Refer to P0430R0 section 2.2

US 76 all
27.10.8.1

all te root-name definition is over-specified. See p0430r0 section 2.3.1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 13 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

[path.generic]
The description of root-name limits its use to be the
starting location for absolute paths. This is overly
restrictive and disregards established practice where
special prefixes on path names is treated as a trigger
for alternate path resolution on certain operating
systems. There are cases where such alternative
path resolution relies on context from the environment
such as the identity of the current user; therefore, the
presence of a special prefix on a path name is not
always indicative of an absolute path.

US 77 all 27.10.8.4.3

[path.append]

all te operator/ (and other append) semantics not useful if
argument has root-name.
A non-POSIX operating system could design its
generic pathname for native file type to have a root-
name and use it in some creative way. For example, if
argument p has a root-name, then p’s root-name
have to be removed before appending.

See p0430r0 section 2.3.2.

US 78 all 27.10.15.1

[fs.op.absolute]

all te Member function absolute in 27.10.4.1 is over-
specified for non-POSIX-like operating system.
.

See p0430r0 Section 2.4.1

US 79 all 27.10.13
[class.directory_iterator]

27.10.15.3 [fs.op.copy]

27.10.15.14
[fs.op.file_size]

27.10.15.35 [fs.op.status]

all te Some file system operation functions are over-
specified for implementation-defined file type.

See p0430r0 section 2.4.2

US 80 21.4 te Missing basic_string_view literals We have “”s for string literals, but nothing to create
string_views. Add similar wording as in
[basic.string.literals], but for basic_string_view,
preferably using “”sv . And they should be constexpr.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 14 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 81 21.2.3.x te More char_traits member functions should be
constexpr

With string_view, we can now build more things at
compile time. However, char_traits is limiting us
here. Mark more of the member functions in
char_traits as constexpr (in particular, compare,
length and find). The member functions move, copy
and pointer-based assign need not be constexpr, but
everything else should be.

US 82 Entire draft ge Address existing open issues in core and library
issues lists

Make technical and editorial changes as appropriate
for each issue, or resolve as NAD

US 83 16.8 ¶ 1 te The definition of the macro __cplusplus refers to
C++14, not C++17

Update definition to reflect the expected ratification
month

US 84 20.14.2 ¶ 2 te The distinction between INVOKE(f, t1, t2, … tN) and
INVOKE(f, t1, t2, … tN, R) is too subtle. If the last
argument is an expression, it represents tN, if it’s a
type, then it represents R. Very clumsy.

Rename
INVOKE(f, t1, t2, … tN, R)
to
INVOKE_R(R, f, t1, t2, … tN) and adjust all uses of
this form.
(Approximately 10 occurrences of invoke would
need to change.)

US 85 20.15.2 and 20.15.6 te The trick of encoding a functor and argument types
as a function signature for is_callable and result_of
loses cv information on argument types, fails for non-
decayed function types, and is confusing. E.g.,
 typedef int MyClass::*mp;
 result_of_t<mp(const MyClass)>;
 // should be const, but isn’t
 typedef int F(double);
 is_callable<F(float)>; // ill-formed

Minimal change:
Replace
is_callable<Fn(ArgTypes...)>
with
is_callable<Fn, ArgTypes...>
and replace is_callable<Fn(ArgTypes...), R>
with is_callable_r<R, Fn, ArgTypes...>.
Do the same for is_nothrow_callable

Preferred change: All of the above, plus deprecate
result_of<Fn(ArgTypes...)>
and replace it with
result_of_invoke<Fn, ArgTypes...>

US 86 20.15.2 and 20.15.6 te “is_callable” is not a good name because it implies Rename “is_callable” to “is_invocable” and rename

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 15 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

F(A…) instead of INVOKE(F, A…) “is_nothrow_callable” to “is_nothrow_invocable”

US 87 1.10.2 ¶ 14 ed The term “block with forward progress guarantee
delegation” is cumbersome. “Forward” is redundant
and “guarantee” is implicit.

Replace the term “block with forward progress
guarantee delegation” with “block with progress
delegation” throughout the standard.

US 88 20.19.4

Section
heading

ed “Sequential” should be “Sequenced” (per P0336r1,
which was adopted 2016-06)

Change “Sequential” to “Sequenced” in section
heading

US 89 20.19.6 Section
heading

ed “Parallel+Vector” should be “Parallel+Unsequenced”
(per P0336r1, which was adopted 2016-06)

Change “Parallel+Vector” to
“Parallel+Unsequenced” in section heading and
change section label from “[execpol.vec]” to
“[execpol.parunseq]”

US 90 25.2.3 ¶ 1 ed Need a cross-reference directing readers to execution
policies [execpol] section

Add a cross-reference link to section 20.19,
somewhere within the paragraph.

US 91 25.3, 25.4, 25.5 ed Presentation of parallel algorithms is confusing.
Despite having parallel overload prototypes in section
25.1 <algorithm> synopsis and blanket wording
25.2.5, it is still confusing to figure out which
algorithms have parallel overloads.

Copy the prototypes for the parallel algorithm
overloads alongside their serial versions in the per-
algorithm description. The common description of a
serial and parallel overload will reinforce that they
exist and have the same semantics. In the cases
where they do not have the same semantics, their
separate descriptions will make that clear, too.

US 92 5.1.5

[expr.prim.lambda]

1 Te Lambda init-captures should support some form of

decomposition declaration, as functions returning

values intended for decomposition will become a

much more common idiom.

Amend the init-capture grammar to allow for a

decomposition-capture.

US 93 5.2.2

[expr.call]

5 Te It is not immediately clear that expressions in the

expression-list will have a fully-specified order of

evaluation if the called function is an overloaded

operator.

Add a second note to 5.2.2 [expr.call] p5 with a

cross-reference to 13.3.1.2 [over.match.oper]
clarifying that the expression-list is evaluated in a

fully specified order when the function call is an

overloaded operator – ideally by providing an

example.

US 94 5.2.3

[expr.type.conv]

2 Te To properly support universal initialization syntax with

class template deduction, this paragraph should

Duplicate the wording for T(x1, x2, ...) to also handle

T{x1, x2, ...}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0336r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0336r1.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 16 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

support initialization through T{x1, x2, ...} as well as

through T(x1, x2, ...). It is expected that while

aggregates would not implicitly be deduced this way,

a deduction guide should be able to offer such

support where desired.
US 95 7

[dcl.dcl]

8 Te There is no obvious reason why decomposition

declarations cannot be declared as static,

thread_local, or constexpr.

Allow constexpr, static, and thread_local to the

permitted set of decl-specifiers.

US 96 8.5

[dcl.decomp]

 Ed This specification would read much more easily with

the usual 0-based indexing than the current 1-based

index.

Use 0-based indexing for the identifier-list, and

replace all use of 'i-1' with just 'i'. The existing 'i'

subscripts would not need to change for this

rebasing.

US 97 8.5

[dcl.decomp]

3 Ed Prefer to use tuple_size_v and tuple_element_t

consistently through the standard, than the more

verbose tuple_size<E>::value and tuple_element<i-1,

E>::type

Consistently use _v/_t form for type traits.

US 98 8.5

[dcl.decomp]

3 Te The lifetime-extension rules when binding a reference

to a temporary do not seem to apply to:

auto [x,y] = std::make_pair<std::string, string>("hello",

"world");

Address the issue of lifetime extension when a

decomposition declaration potentially binds a

reference to a temporary object.

US 99 8.5

[dcl.decomp]

 Ge Decomposition declarations are confusing in generic

code: auto [x,y,z] = f(a,b,c); may bind references if the

result is a pair or tuple (returned by value); or copy

distinct objects if f returns an array by reference, or

returns an aggregate (by value or by reference).

Provide more consistent semantics for predictable

behavior within function templates by not implicitly

binding references to results returned by value, or by

always binding references (and extending lifetimes)

in such cases.

US 100 8.5

[dcl.decomp]

 Ge Decomposition declarations should provide syntax to

discard some of the returned values, just as std::tie

Extend the grammar of decomposition declarations

to support discarded values, such as by allowing

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 17 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

uses std::ignore. void in the identifier-list.
US 101 9

[class]

10 Ge The term POD no longer serves a purpose in the

standard, it is merely defined, and restrictions apply

for when a few other types preserve this vestigial

property. The is_pod trait should be deprecated,

moving the definition of a POD type alongside the

trait in Annex D, and any remaining wording referring

to POD should be struck, or revised to clearly state

intent (usually triviality) without mentioning PODs.

Move the definition of is_pod/is_pod_v to D.12
[depr,meta.types]

Move 9p10 [class] into D.12 [depr,meta.types]

Reword footnote 40 in terms of trivial constructors

Strike POD classes and the definition of POD types
from 3.9p9 [basic.types]

Strike 5.1.5 [expr.prim.lambda]
p4 bullet 4.4

Strike footnote 108 (from 9p10)

Strike the reference to POD type in 17.3.4
[defns.character.container]

Revise definition of max_align_t in 18.2.3
[support.types.layout] p5

Revise definition of aligned_storage::type in table 46

- Other transformations

Revise definition of aligned_union::type in table 46 -

Other transformations

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 18 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Update the introductory sentence to
21.1[strings] p1

US 102 13.3.1.2

[over.match.oper]

2 Te It is no longer legal to manually transform code from
infix form to function form. For example, the
expression a() = b() sequences b() before a() while
a().operator=(b()) sequences a() before b().

Require a left-to-right order of evaluation for

assignment operators, and for compound-

assignment operators, consistent with such

requirements on other operators.

US 103 14.9

[temp.deduct.guide]

2 Te It is not clear that when a simple-template-id names a

template specialization, the default template

parameters of the primary template by still be relied
upon. The example from p0091r3 that clearly shows

this is the intent:

template <class Iter> vector(Iter b, Iter e) ->

vector<typename iterator_traits<Iter>::value_type>;

The allocator of the vector is clearly not named, and

expected to deduce as the default allocator

(std::allocator< typename

iterator_traits<Iter>::value_type>).

If the wording is already thought to state this clearly

enough, add an example (such as in this comment)

to clarify intent for the reader. Otherwise, amend the

wording as necessary so that default template

arguments will be used, as needed, to fill out the

name of the class template specialization.

US 104 16.1

[cpp.cond]

 Te __has_include has an ugly __ prefix that is not

connected to a joining symbol.

This appears necessary to avoid intruding on user-

defined macros, but there are alternative solutions.

For example, a '__' anywhere in a name is reserved

to the implementation, so we could put the '__' in the

middle instead,

Replace all use of __has_include with has__include

US 105 17-30

plus Annex D

 Ge The library has been getting more careful about

specifying runtime preconditions and constraints in

Adopt a revision of p0411r0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0411r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 19 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

the type system, but both are documented in the

same Requires clause which often could be clearer,

especially when constraining how function templates

interact with SFINAE. The terminology should be

made more precise, with an expectation to uncover

and clean up a few surprising corner cases as part of

the process.

US 106 17-30

plus Annex D

 Ge Review the whole library for constructors using

member typedefs to name constructor parameters

rather than template type parameters, as this inhibits

class template deduction. e.g., the unique_lock

explicit constructor taking the mutex_type typedef

would be better served naming Mutex directly, to

preserve support for deduction.

Review each constructor of each library class

template, and revise specification of parameter

types as needed.

US 107 17.3

[defintions]

 Te The term 'direct non-list initialization' needs to be

incorporated from the Library Fundamentals TS, as

several components added to C++17 rely on this

definition.

Add:
17.3.X direct-non-list-initialization [defns.direct-
non-list-init]
A direct-initialization that is not list-initialization.

US 108 20.2.2

[utility.swap]

 Te swap is a critical function in the standard library, and

should be declared constexpr to support more

widespread support for constexpr in libraries. This
was proposed in p0202r1 which was reviewed

favourably at Oulu, but the widespread changes to

the <algorithm> header were too risky and unproven

for C++17. We should not lose constexpr support for

the much simpler (and more important) <utility>

functions because they were attached to a larger

paper. Similarly, the fundamental value wrappers,

Adopt the changes to the <utility> header proposed
in p0202r1, i.e., only bullets C, D, and E.

In addition, mark the swap functions of pair and

tuple as constexpr, and consider doing the same for

optional and variant.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0202r1.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 20 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

pair and tuple, should have constexpr swap functions,

and the same should be considered for optional and

variant. It is not possible to mark swap for std::array
as constexpr without adopting the rest of the p0202r1

though, or rewriting the specification for array swap to

not use swap_ranges.
US 109 20.5.1

[tuple.general]

 Te tuple should be a literal type if its elements are literal

types; it fails because the destructor is not

necessarily trivial. It should follow the form of optional

and variant, and mandate a trivial destructor if all

types in Types... have a trivial destructor. It is not

clear if pair has the same issue, as pair specifies data

members first and second, and appears to have an

implicitly declared and defined destructor.

Document the destructor for tuple, and mandate that

it is trivial if each of the elements in the tuple has a

trivial destructor. Consider whether the same

specification is needed for pair.

US 110 20.5.2.1

20.6.3.1

20.11.1.2.1

 Te The move constructors for tuple, optional, and

unique_ptr should return false for

is_(nothrow_)move_constructible_v<TYPE> when

their corresponding Requires clauses are not

satisfied, as there are now several library clauses that

are defined in terms of these traits. The same

concern applies to the move-assignment operator.

Note that pair and variant already satisfy this

constraint.

US 111 20.6.3.1

[optional.object]

 Te The copy and move constructors of optional are not

constexpr. However, the constructors taking a const

T& or T&& are constexpr, and there is a precedent for
having a constexpr copy constructor in 26.5.2
[complex]. The defaulted copy and move

Add constexpr to:

constexpr optional(const optional &);

constexpr optional(optional &&) noexcept(see

below);

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 21 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constructors of pair and tuple are also conditionally
constexpr (see 20.4.2 [pairs.pair] p2 and 20.5.2.1
[tuple.cnstr] p2).

A strong motivating use-case is constexpr functions

returning optional values. This issue was discovered

while working on a library making heavy use of such.
US 112 20.7.2

 [variant.variant]

 Te Variants with an empty set of alternatives fail to work

for a number of reasons. This should be explicitly

acknowledged in the design, lest we attract defect

reports on those many failings.

Either add an explicit requirement that

sizeof...(Types) > 0, or add a note that we believe

this is already implicit in the specification that

follows.

US 113 20.7.2

[variant.variant]

 Te Variants cannot properly support allocators, as any

assignment of a subsequent value throws away the

allocator used at construction. This is not an easy

problem to solve, so variant would be better

served dropping the illusion of allocator support for

now, leaving open the possibility to provide proper

support once the problems are fully understood.

Strike the 8 allocator aware constructor overloads
from the class definition, and strike 20.7.2.1
[variant.ctor] p34/35.

Strike clause 20.7.12 [variant.traits]
Strike the specialization of uses_allocator for variant
in the <variant> header synopsis, 20.7.1
[variant.general].

US 114 20.7.2

[variant.variant]

2 Te variant needs to know the size of an object in order

to compute the size of its internal buffer, so require

that any cv-qualified object type in Types... be a

complete type.

Add 'complete' in p2:

"All types in Types... shall be (possibly cv-qualified)

complete object types, (possibly cv-qualified) void, or

references."

US 115 20.7.2

[variant.variant]

2 Te Support for void alternatives is confusing and

underspecified; it should be deferred as an extension

until a future standard. For example, if any of the

alternatives is void, the current specification fails to

satisfy the Requires clause for all 6 relational

operators, and loses (shall not participate in overload

Strike '(possibly cv-qualified) void," from 20.7.2
[variant.variant] p2

From 20.7.4 [variant.get]
Strike ", and TI is not (possibly cv-qualified) void'

from p3.

Strike ", and T is not (possibly cv-qualified) void'

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 22 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

resolution) the copy constructor, move constructor,

copy-assignment operator, move-assignment

operator, swap member and free function. It is not

clear that a variant with a void alternative can be

visited, especially in the multiple-variant visitor

case. Adding a void alternative will render an

otherwise trivial variant destructor as non-trivial. Are

all of these consequences the intended design?

from p5.

Strike ", and TI is not (possibly cv-qualified) void'

from p7.

Strike ", and T is not (possibly cv-qualified) void'

from p9.

US 116 20.7.2

[variant.variant]

2 Te Support for array alternatives does not seem to work

as expected. For example, if any of the alternatives

is an array, the current specification fails to satisfy the

Requires clause for all 6 relational operators, and

loses (shall not participate in overload resolution) the

copy constructor, move constructor, copy-assignment

operator, move-assignment operator (although the

swap functions will work correctly). It is difficult to

activate an array alternative - to the best of my

understanding, it must be emplaced with no

arguments in order to value-initialize the array, and

then the value of each element may be assigned as

needed. Many of these issues would be resolved if

array alternatives were implemented by storing a

std::array instead, and then exposing the exposition-

only array member (of the std::array) to the get

functions, but that seems like an experimental change

that should be investigated for the next standard. For

C++17, we should drop support for arrays (but not
std::array) as alternatives, in order to leave freedom

Add 'not an array' in p2:

"All types in Types... shall be (possibly cv-qualified)

object types that are not arrays, (possibly cv-

qualified) void, or references to non-array objects."

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 23 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

to support them properly in the next standard.
US 117 20.7.2

[variant.variant]

2 Ge It is not clear what support is intended for function

references. The presence of a function-reference in

the list of alternatives causes some operations to fail

to instantiate/exist at all, and there is no clear benefit

to supporting function references but not function

types.

Qualify references as 'references to object types':

"All types in Types... shall be (possibly cv-qualified)

object types, (possibly cv-qualified) void, or

references to object types."

US 118 20.7.2.1

[variant.ctor]

19, 23,

27, 31

Te The form of initialization for the emplace-constructors

is not specified. We are very clear to mandate "as

if by direct non-list initialization' for each constructor

in optional, so there is no ambiguity regarding parens

vs. braces. That wording idiom should be followed by

variant.

Insert the phrase "as if direct-non-list-initializing" at

appropriate locations in paragraphs 19, 23, 27, and

31

US 119 20.7.2.3

[variant.assign]

 Te The copy-assignment operator is very careful to

not destroy the contained element until after

a temporary has been constructed, which can be

safely moved from. This makes the

valueless_by_exception state extremely rare, by

design. However, the same care and attention is not

paid to the move-assignment operator, nor the

assignment-from-deduced-

value assignment template. This concern should be

similarly important in these cases, especially the
latter.

US 120 20.7.4

[variant.get]

3,5 Ed For void alternatives, the get functions returning a

reference naturally fall out of overload resolution as

you cannot make a reference to void, so there is no

need to call out this special case. Note that this is

Strike ", and TI is not (possibly cv-qualified) void'

from p3.

Strike ", and T is not (possibly cv-qualified) void'

from p5.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 24 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

NOT the case for the get_if overloads, which would

return a pointer to void.
US 121 20.7.11

[variant.hash]

1 Te The value of a variant comprises the index as well as

the contained alternative (if any), as can be seen in

the comparison operators. Make it clear that

both parts should contribute to the hash result.

Add: [Note: The value of a variant comprises the

active index and the currently contained value, if

any. Both parts should contribute to the resulting

hash value - end note]

US 122 20.11.1.2.1

[unique.ptr.single.ctor]

4 Te unique_ptr should not satisfy

is_constructible_v<unique_ptr<T, D>> unless D is

DefaultConstructible and not a pointer type. This is

important for interactions with pair, tuple, and variant

constructors that rely on the is_default_constructible

trait.

Add a Remarks: clause to constrain the default

constructor to not exist unless the Requires clause is

satisfied.

US 123 20.11.1.2.1

[unique.ptr.single.ctor]

12 Te is_constructible_v<unique_ptr<P, D>, P, D const

&> should be false when D is not copy constructible,

and similarly for D&& when D is not move

constructible. This could be achieved by the

traditional 'does not participate in overload resolution'

wording, or similar.

Add a Remarks: clause to constrain the appropriate

constructors.

US 124 20.11.2.2

[util.smartptr.shared]

 Te Several shared_ptr related functions have wide

contracts and cannot throw, so should be marked

unconditionally noexcept.

Add 'noexcept' to:

template<class U> bool

shared_ptr::owner_before(shared_ptr<U> const& b)

const noexcept;

template<class U>

bool shared_ptr::owner_before(weak_ptr<U> const&

b) const noexcept;

template<class U> bool

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 25 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

weak_ptr::owner_before(shared_ptr<U> const& b)

const noexcept;

template<class U>

bool weak_ptr::owner_before(weak_ptr<U> const&

b) const noexcept;

bool owner_less::operator()(A,B) const noexcept; //

all versions
US 125 20.11.2.2.1

[util.smartptr.shared.const]

4 Te This constructor should not participate in overload

resolution unless the Requires clause is

satisfied. Note that this would therefore apply to

some assignment operator and reset overloads, via

Effects: equivalent to some code wording.

Add a Remarks: clause to constrain this constructor

not to participate in overload resolution unless the

Requires clause is satisfied.

US 126 20.11.2.2.1

[util.smartptr.shared.const]

8 Te This constructor should not participate in overload

resolution unless the Requires clause is

satisfied. Note that this would therefore apply to

some assignment operator and reset overloads, via

Effects: equivalent to some code wording.

Add a Remarks: clause to constrain this constructor

not to participate in overload resolution unless the

Requires clause is satisfied.

US 127 20.11.2.2.1

[util.smartptr.shared.const]

8 Te It should suffice for the deleter D to be nothrow move-

constructible. However, to avoid potentially leaking

the pointer p if D is also copy-constructible when

copying the argument by-value, we should continue

to require the copy constructor does not throw if D

is CopyConstructible.

Relax the requirement the D be CopyConstructible

to simply require that D be MoveConstructible.

Clarify the requirement that construction of any of

the arguments passed by-value shall not throw

exceptions. Note that we have library-wide wording

in clause 17 that says any type supported by the

library, not just this delete, shall not throw

exceptions from its destructor, so that wording could

be editorially removed. Similarly, the requirements

that A shall be an allocator satisfy that neither

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 26 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constructor nor destructor for A can throw.
US 128 20.11.2.2.1

[util.smartptr.shared.const]

9 Te As this constructor is taking ownership of a new

pointer, it should enable shared_from_this with p

(unless p == 0). Note that making this an Effect here

renders the additional enable shared_from_this for a

released unique_ptr in p27 redundant.

Add to Effects:

The first and second constructors enable

shared_from_this with (T*)p.

US 129 20.11.2.2.1

[util.smartptr.shared.const]

 22 Te This constructor should not participate in overload

resolution unless the requirements are satisfied, in

order to give correct results from the is_constructible

trait.

Add a Remarks: clause to constrain this constructor

not to participate in overload resolution unless the

Requires clause is satisfied.

US 130 20.11.2.2.1

[util.smartptr.shared.const]

26 Te There is no ability to supply an allocator for the

control block when constructing a shared_ptr from a

unique_ptr. Note that no further shared_ptr

constructors need an allocator, as they all have pre-

existing control blocks that are shared, or already

have the allocator overload.

Add an additional shared_ptr constructor,

template <class Y, class D, class A>

shared_ptr(unique_ptr<Y, D>&& r, A alloc), with the

same semantics as the existing constructor taking a

unique_ptr, but using the alloc argument to supply

memory as required.

US 131 20.11.2.2.1

[util.smartptr.shared.const]

27 Te The constructor delegated to by a call to r.release is a

deduction context, so unique_ptr<Y,D>::pointer must

not only convert to T*, but also unambiguously satisfy

the deduction context, or the effects clause should

include an explicit cast to T*. Such casts must not

throw exceptions, or else the released pointer will not

have its deleter run.

Revise this paragraph: [Added two (T*) casts,

added restrictions on throwing]

Effects: If r.get() == nullptr, equivalent to

shared_ptr(). Otherwise, if D is not a reference type,

equivalent to shared_ptr((T*)r.release(),

r.get_deleter()). Otherwise, equivalent to

shared_ptr((T*)r.release(), ref(r.get_deleter())).

Casts to T* must not throw exceptions; otherwise, if

an exception is thrown, the constructor has no

effect. If r.get() != nullptr, enables shared_from_this

with the value that was returned by r.release().

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 27 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 132 20.11.2.2.1

[util.smartptr.shared.const]

9, 27 Te As paragraphs 8-11 apply equally to the constructor

taking a unique_ptr due to the Effects: equivalent to

some code rules, there is a conflict between p9

saying d(p) is run if an exception is thrown, and p27

saying it shall have no effect.

Strike the penultimate sentence of p27, and implicitly

require the unique_ptr is released and deleter run if

an exception is thrown.

US 133 20.11.2.2.1

[util.smartptr.shared.const]

27 Ed With the revised definition of enables

shared_from_this with p in p1, there is no need to

check r.get() != nullptr. Further, paragraphs 8-11

apply equally to the unique_ptr constructor due to the

Effects: equivalent to some code rules, and we do not

want to enable twice, so the whole sentence is

redundant.

Strike the last sentence, which begins with "If r.get()

!= nullptr,".

US 134 20.11.2.2.2

[util.smartptr.shared.dest]

1 Te The semantics for destroying the deleter and the

control-block are unclear. In particular, it is not clear

that we guarantee a lack of race conditions

destroying the control-block and deleter. Possible

race-free implementations might destroy the deleter

after running d(p), and before giving up the weak

reference held by this shared_ptr; running the

destructor for 'd' only when the last weak_ptr is

destroyed, potentially at a much later date, but

ensuring that d(p) completes before the shared_ptr

gives up its weak reference; making a copy of 'd' in

the destructor before manipulating the weak count,

and then using this copy to run 'd(p)', even while the

control-block could be concurrently reclaimed with an
expiring weak_ptr in another thread. Note that this

Clarify that the shared_ptr weak ownership of the

control block is released at the end of the destructor,

and not as the destructor begins. Otherwise, the

deleter might be destroyed even before the

destructor gets to move a copy to call safely.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 28 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

may be related to LWG #2751. (Also, see the note in

20.11.2.2.10p1 [util.smartptr.getdeleter])
US 135 20.11.2.2.7

[util.smartptr.shared.cmp]

2 Te The less-than operator for shared pointers compares

only those combinations that can form a

composite pointer type. With the C++17 wording for

the diamond functor, less<>, we should be able to

support comparison of a wider range of shared

pointers, such that less<>::operator(shared_ptr<A>,

shared_ptr) is consistent with less<>::operator(A

*, B *).

Replace less<V> with just less<>, and drop the

reference to composite pointer types.

US 136 20.11.2.2.9

[util.smartptr.shared.cast]

2, 6, 10 Ed The returns clause for each cast mentions storing a

copy of the cast pointer in the returned shared_ptr,

unless the original pointer is empty. However, even

in the case of the empty shared_ptr, we might store

such a value to satisfy the post-condition, so saying

this in two places is redundant and potentially

contradictory. It suffices to say that each cast returns

(when successful) a shared_ptr that shares

ownership with the shared_ptr argument.

Note that static_pointer_cast (and

reinterpret_pointer_cast) could be further simplified

as:

Effects: equivalent to return shared_ptr<T>{r,
static_cast<T*>(r.get())};

Strike the un-necessary reference to storing an
object in the otherwise clause of each paragraph
(deferring to the Effects clause):
Returns: If r is empty, an empty shared_ptr<T>;
otherwise, a shared_ptr<T> object that stores

static_cast<T*>(r.get()) and shares ownership with r.

US 137 20.11.2.2.9

[util.smartptr.shared.cast]

(6.2) Te It is intuitive, but not specified, that the empty pointer

returned by a dynamic_pointer_cast should point to

Rephrase as:

Otherwise, shared_ptr<T>().

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 29 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

null.
US 138 20.14.2

[func.require]

 Ed The INVOKE protocol is used widely beyond just the

<functional> sub-clause, and really belongs in the

front matter of clause 17, taking the definitions of call

wrappers and callable entities with it.

Move 20.14.1 [func.def] to 17.3 [definitions], and

20.14.2 [func.require] to 17.6 [requirements].

US 139 20.14.3

[func.invoke]

 Te As the INVOKE protocol is used widely throughout

the library, support for the invoke wrapper function

belongs at the same level as move, forward, and

swap. Note that as the invoke function has not yet

been published in a standard, this is the last chance

to cheaply make such a refactoring.

Move the invoke function template into the <utility>
header. Move 20.14.3 [func.invoke] into 20.2
[utility]

US 140 20.14.14

[unord.hash]

2 Te Specializations of std::hash for arithmetic, pointer,

and standard library types should not be allowed to

throw. The constructors, assignment operators, and

function call operator should all be marked as

noexcept.

It might be reasonable to consider making this a

binding requirement on user specializations of the

hash template as well (in p1) but that may be big a

change to make at this stage.

US 141 20.15 [meta] Ge The free-standing <type_traits> header, through the

is_callable trait relying on the definition of INVOKE,

has a dependency on reference_wrapper in the non-

freestanding <functional> header.

Remove the dependency on reference_wrapper in

INVOKE, either by generalizing the support it is

trying to offer for all such wrapper types, or deferring

INVOKE support for reference_wrapper until a better

solution for the dependencies can be worked out.

US 142 20.15.2

[meta.type.synop]

 Te An alias template using the new template template

auto deduction would make integral_constant slightly

Add to the synopsis of <type_traits>:

template <auto N>

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 30 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

easier to use. using integer_constant =

integral_constant<decltype(N), N>;
US 143 20.15.4.3

[meta.unary.prop]

Table 38 Te An is_aggregate type_trait is needed. The emplace

idiom is now common throughout the library, but

typically relies on direct non-list initalization, which

does not work for aggregates. With a suitable type-

trait, we could extend direct non-list-initlaization to

perform aggregate-initalization on aggregate types.

Add a new row to Table 38:

template <class T>

struct is_aggregate;

T is an aggregate type ([dcl.init.aggr])

remove_all_extents_t<T> shall be a complete type,

an array type, or (possibly cv-qualified) void.

US 144 20.17.5

[time,duration]

 Te Add a deduction guide for class template duration Add to <chrono> synopsis:

template <class Rep, class Period>

duration(const Rep &) -> duration<Rep>;

US 145 21.3.1

[basic.string]

 Te There is no requirement that traits::char_type is

charT, although there is a requirement that

allocator::value_type is charT. This means that it

might be difficult to honour both methods returning

reference (such as operator[]) and charT& (like

front/back) when traits has a surprising char_type. It

seems that the allocator should NOT rebind in such

cases, making the reference-returning signatures the

problematic ones.

Add a requirement that is_same_v<typename

traits::char_type, charT> is true, and simplify so that

value_type is just an alias for charT.

US 146 23.2.1

[container.requirements.general]

13 Te An allocator-aware contiguous container must require

an allocator whose pointer type is a contiguous

iterator. Otherwise, functions like data for basic_string

and vector do not work correctly, along with many

other expectations of the contiguous guarantee.

Add a second sentence to
23.2.1 [container.requirements.general] p13:

An allocator-aware contiguous container requires

allocator_traits<Allocator>::pointer is a contiguous

iterator.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 31 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 147 23

[containers]

 Te One of the motivating features behind deduction

guides was constructing containers from a pair of

iterators, yet the standard library does not provide

any such deduction guides. They should be provided

in header synopsis for each container in clause 23. It

is expected that the default arguments from the called

constructors will provide the context to deduce any

remaining class template arguments, such as the

Allocator type, and default comparators/hashers for

(unordered) associative containers. At this stage, we

do not recommend adding additional guides to

deduce a (rebound) allocator, comparator etc. due to

the likely large number of such guides. It is noted that

the requirements on iterator_traits to be an empty

type will produce a SFINAE condition to allow correct

deduction for vector in the case of the Do-The-Right-

Thing clause, resolving ambiguity between two
integers, and two iterators.

For each container in clause 23, add to the header

synopsis a deduction guide of the form:

template <class Iterator>

container(Iterator, Iterator) -> container<typename

iterator_traits<Iterator>::value_type>;

US 148 23.3.2

[array.syn]

 Te std::array does not support class-template deduction

from initializers without a deduction guide.

Add to <array> synopsis:

template <class TYPES>

array(TYPES&&...) ->

array<common_type_t<TYPES...>,

sizeof...(TYPES)>;

US 149 23.3.7.3

[array.specaial]

3 Ed The array swap function also exchanges the values of

elements, which is forbidden (unless explicitly
documented) by 23.2.1
[container.requirements.general] p9

Update the note accordingly.

US 150 23.6 Te The three container adapters should each have a For each container adapter, add a deduction guide

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 32 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

[container.adaptors] deduction guide allowing the deduction of the value

type T from the supplied container, potentially

constrained to avoid confusion with deduction from a

copy/move constructor.

of the form:

template <class Container>

adapter(const Container&) -> adapter<typename

Container::value_type, Container>;
US 151 24.5.2

[insert.iterators]

 Te The three insert iterators should each have an

instantiation guide to initialize from a container.

Add to the <iterator> header synopsis:

template <class Container>

back_insert_iterator(Container&) ->

back_insert_iterator<Container>;

template <class Container>

front_insert_iterator(Container&) ->

back_insert_iterator<Container>;

template <class Container>

insert_iterator(Container&, typename
Container::iterator) -> insert_iterator<Container>;

US 152 24.6.1.1

[istream.iterator.cons]

 Ed see below for the default constructor should simply be

spelled constexpr. The current declaration looks like a

member function, not a constructor, and the

constexpr keyword implicitly does not apply unless

the instantiation could make it so, under the

guarantees already present in the Effects clause.

Replace see below with constexpr in the declaration

of the default constructor for istream_iterator in the

class definition, and function specification.

US 153 24.6.1.1

[istream.iterator.cons]

 Te istream_iterator default constructor requires a

DefaultConstructible T

Add a new p1:

Requires: T is DefaultConstructible

US 154 24.6.1.1 [istream.iterator.cons] 5 Te The conflation of trivial copy constructor and literal

type is awkward. Not all literal types have trivial copy

constructors, and not all types with trivial copy

constructors are literal.

Revise p5 as:

Effects: Constructs a copy of x. If T has a trivial copy

constructor, then this constructor shall be a trivial

copy constructor. If T has a constexpr copy

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 33 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constructor, then this constructor shall be constexpr.
US 155 24.6.1.1

 [istream.iterator.cons]

7 Te The requirement that the destructor is trivial if T is a

literal type should be generalized to any type T with a

trivial destructor - this encompasses all literal types,

as they are required to have a trivial destructor.

Revise p7 as:

Effects: The iterator is destroyed. If T has a trivial

destructor, then this destructor shall be a trivial

destructor.

US 156 25

[algorithm],

26.8

[numeric.ops]

 Te Parallel algorithms cannot easily work with

InputIterators, as any attempt to partition the work is

going to invalidate iterators used by other sub-tasks.

While this may work for the sequential execution

policy, the goal of that policy is to transparently switch

between serial and parallel execution of code without

changing semantics, so there should not be a special

case extension for this policy. There is a

corresponding concern for writing through

OutputIterators. Note that the input iterator problem

could be mitigated, to some extent, by serially

copying/moving data out of the input range and into

temporary storage with a more favourable iterator

category, and then the work of the algorithm can be

parallelized. If this is the design intent, a note to

confirm that in the standard would avoid future issues

filed in this area. However, the requirement of an

algorithm that must copy/move values into

intermediate storage may not be the same as those

acting immediately on a dereferenced input iterator,

and further issues would be likely. It is not clear that

anything can be done to improve the serial nature of
writing to a simple output iterator though.

All algorithms in the <algorithm> and <numeric>

headers that take an execution policy and an

InputIterator type should update that iterator to a

ForwardIterator, and similarly all such overloads

taking an OutputIterator should update that iterator

to a ForwardIterator.

(Conversely, if the design intent is confirmed to

support input and output iterators, add a note to

state that clearly and avoid confusion and more

issues by future generations of library

implementers.)

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 34 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 157 25

[algorithm],

26.8

[numeric.ops]

 Ed Many algorithms list parallel overloads in the header

synopsis, but are not repeated under the specification

sub-clause for the corresponding (serial) algorithm,

unless they make substantive tweaks to the contract.

This is confusing when looking up the specification for

a given algorithm; the parallel overloads should be

added directly under the serial forms without further

change.

Ensure all parallel algorithm signatures appear

above their corresponding specification, even when

no change of contract from the serial form is

intended.

US 158 26.8

[numeric.ops]

 Ed The numerical algorithms in the <numeric> header

have more in common with the algorithms library

(clause 25) than they do with anything else in the

numerics library (clause 26). In particular, there is

front-matter on definitions that apply only to clause

25, that is later opted-into just the numeric-algorithms

clause 26.8 [numeric.ops], and this became more

pronounced with the addition of the parallel algorithm

overloads. A more ambitious step would be to move

the contents of the <numeric> header into

<algorithm>, retaining it as a deprecated header

whose contents are the single line #include

<algorithm>. That discussion is probably better
deferred to the next revision of the standard though.

Move 26.8 [numeric.ops] into clause 25, preceding

25.6 [alg.c.library]. Move 26.2 [numeric.defns]
under 25.1 [algorithms.general].

Move 20.9 [execpol] into clause 25, somewhere

before the specification of the <algorithm> header.

US 159 26.8.3

[Reduce]

 Te GENERALIZED_SUM should be available for only

parallel versions of the algorithm. Permuting the

operands should not be permitted for non-parallel

versions, in which case reduce is equivalent to

accumulate.

Returns:
GENERALIZED_NONCOMMUTATIVE_SUM(...).

Repeat exactly the current contract for the overloads

with a parallel policy (including the serial policy).

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 35 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 160 26.8.4

 [transform.reduce]

 Te transform_reduce(begin(vector_strings),

end(vector_strings), upcase, "", concat) should not

reorder the strings. The serial form of this algorithm

(i.e., with no execution policy; no change for the

explicit serial policy) should return

a GENERALIZED_NONCOMMUTATIVE_SUM rather

than the specified GENERALIZED_SUM.

Returns:
GENERALIZED_NONCOMMUTATIVE_SUM(...).

Repeat exactly the current contract for the overloads

with a parallel policy (including the serial policy).

US 161 26.8.5

[inner.product]

 Te There is a surprising sequential operation applying

BinaryOp1 in inner_product that may, for example,

require additional storage for the parallel algorithms

to enable effective distribution of work, and is likely to

be a performance bottleneck. GENERALIZED_SUM

is probably intended here for the parallel version of

the algorithm, with the corresponding strengthening

on constraints on BinaryOp1 to allow arbitrary order

of evaluation.

For the overloads taking an execution policy, copy

the current specification, but replace algorithm in

Effects with:

GENERALIZED_SUM(plus<>(), init, multiplies<>(*i1,

*i2), ...)

GENERALIZED_SUM(binary_op1, init,

binary_op2(*i1, *i2), ...)

US 162 26.8.11

[adjacent.difference]

 Te The specification for adjacent_difference has baked-

in sequential semantics, in order to support

reading/writing through input/output iterators. There

should a second specification more amenable to

parallelization for the overloads taking an execution

policy.

Provide a specification for the overloads taking an

execution policy this is more clearly suitable for

parallel execution. (i.e., one that does not refer to

an accumulated state.)

US 163 30.6.3

[futures.future_error]

 Te The constructor for future_error should not be

exposition only - this is the only exception class in the

standard library that users have no clearly specified

way to throw themselves. If we want the exception

class to be limited to the standard library, at least

make the exposition-only constructor private.

Document the exposition-only constructor.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 36 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 164 30.6.7

[futures.shared_future]

 Te Add a deduction guide for creating a shared future

from a future rvalue.

Add to the <future> synopsis:

template <class R>

shared_future(future<R>&&) -> shared_future<R>;

US 165 30.6.9

[futures.task]

 Te The constructor that type-erases an allocator has all

of the problems of the similar function constructor that

was removed for this CD. This constructor from

'packaged_task' should similarly be removed as well.

If we prefer to keep this constructor, the current

wording is underspecified, as the Allocator argument

is not required to be type satisfying the Allocator

requirements, nor is allocator_traits used.

Strike

template <class F, class Allocator>

packaged_task(allocator_arg_t, const Allocator& a,

F&& f);
from the class definition in p2, and from 30.6.9.1
[futures.task.members] p2.

Strike the last sentence of 30.6.9.1p4.

In p3, revise "These constructors" to "This

constructor"

US 166 C.1

[diff.iso]

 Ge The C standard has lower limits for many

implementation quantities, such as an #include

recursion depth of 15 rather than 256 in C++.

Suggest adding a compatibility clause for Annex B

that observes that C often has lower implementation

limits than C++, when trying to write portable code

(without calling each out specifically, as that would be

a maintenance burden for future standards).

Add C.11 [diff.implimits] with a paragraph that

portable code intended to translate in both

languages should be aware that C has lower

implementation limits than C++.
Strike 26.8.1 [numeric.ops.overview] p1.

US 167 25.2.4 2 te Calling 'std::terminate' when an element access
function exits via. an uncaught exception effectively
disables the normal means of C++ error handling and
propagation when using the parallel algorithms. This
will be both confusing to users and a common source
of bugs. Furthermore, by defining this behavior we
are essentially preventing further solutions to this
problem.

There are several solutions that would be
acceptable, among them:

1. Make it undefined behavior when an element
access function exits via. an uncaught exception.
This will allow for a future solution to this problem
that is backwards compatible.

2. When an element access function exits via. an
uncaught exception, throw a 'std::exception_list'

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 37 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

which represents a collection of exceptions that
were thrown in parallel.

3. When an element access function exits via. an
uncaught exception, throw an unspecified
'std::exception'.

4. Rename the parallel algorithms to clarify that
exception throwing code will result in a call to
'std::terminate'. For example
'std::exceution::parallel_policy' would be renamed to
'std::exceution::parallel_policy_noexcept' and
'std::execution::par' would be renamed to
'std::execution::par_noexcept'.

US168 25.2.5 2 te It is unclear what behavior a parallel algorithm will
have when a user-provided function exits via. an
uncaught exception. This statement seems to require
most parallel algorithms to nodeterministically choose
one of the exceptions thrown and then re-throw that
in the calling thread.

Clarify in section 25.2.5 what happens when a user-
provided function throws an exception.

US 169 25.2.5 2 te This statement seems to require most parallel
algorithms to nodeterministically choose one of the
exceptions thrown and then rethrow that in the calling
thread. In the case that multiple threads witness an
exception from a user-provided function, all but one of
those exceptions gets discarded. It is much
preferrable to have all exception data preserved.

When a user-provided function exits via. an
uncaught exception, throw a 'std::exception_list'
structure which represents a collection of exceptions
that were thrown in parallel.

US 170 2 25.2.4 te The current wording does not leave the door open for
executors (a feature under development by SG1) to
modify the exception-handling behaviour of parallel
algorithms in the future without breaking backwards
compatibility.

Define a construct
std::execution::exception_handling (the “parallel
algorithms exception handling customization point”)
such that std::execution::exception_handling(ep),
where ep is an ExecutionPolicy, is well formed and
returns an object which fulfils a
ParallelExceptionHandler concept. For the three
execution policies defined in the standard,
std::execution::exception_handling(ep) shall return a
parallel exception handler object which shall call

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 38 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

terminate() when the invocation of an element
access function exits via an uncaught exception.
The intention of this wording is to cause no change
to the behaviour in the existing wording, but to
ensure that the “terminate() on uncaught exception”
behaviour is not baked into all future executors, just
the implicit “default executor”.

US 171 20.15.2 te The *_constant<> templates (including the proposed
addition, bool_constant<>) do not make use of the
new template<auto> feature.

Add a constant<> (subject to bikeshedding) template
which uses template<auto>. Define
integral_constant<> as using integral_constant<T,
V> = constant<T(V)> or integral_constant<T, V> =
constant<V>. Either remove bool_constant, define it
as using bool_constant = constant<bool(B)> or using
bool_constant = constant.

US 172 17.7, 26.9
and possibly others

 ge noexcept is inconsistently applied across headers
which import components of the C standard library
into the C++ library; some functions (std::abort(),
std::_Exit(), etc) are defined as noexcept in some
places, but not in others. Some functions which seem
like they should be noexcept (std::abs(), std::div(),
etc) are not defined as noexcept.

Make the majority of the C library functions (with
exceptions such as std::qsort() and std::bsearch(),
which can call user code) noexcept. The following
comments address areas of particular concern.

US 173 17.7 ed In the header synopsis for <cstdlib>, std::abort(),
std::atexit() (both overloads), std::at_quick_exit()
(both overloads), std::_Exit() and std::quick_exit() are
not declared noexcept. However, in 18.5 they are
declared noexcept.

Add noexcept to the declarations of std::abort(),
std::atexit(), std::at_quick_exit(), std::_Exit() and
std::quick_exit() in 17.7.

US 174 17.7
and 18.5

 te std::exit() is not noexcept. Make std::exit() noexcept.

US 175 26.9
and 26.9.2

 te std::abs(), std::labs() and std::llabs() are not
noexcept.

Make all overloads of std::abs(), std::labs() and
std::llabs() noexcept.

US 176 17.7 te std::div(), std::ldiv() and std::lldiv() are not noexcept. Make all overloads of std::div(), std::ldiv() and
std::lldiv() noexcept.

US177 26.9 te None of the functions in namespace std in <cmath>
are noexcept.

Make all of the functions in namespace std in
<cmath>, including the new special math functions,
noexcept.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 39 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US 178 20.10.11 te The C library memory allocation functions declared in
<cstdlib> (std::aligned_alloc(), std::calloc(),
std::malloc(), std::realloc() and std::free()) are not
noexcept.

Make std::aligned_alloc(), std::calloc(), std::malloc(),
realloc() and std::free() noexcept.

US 179 20.6.3 ed The heading for this section is “optional for object
types”, yet there are no specializations (partial or
otherwise) of this optional class or other optional
classes defined in the standard.

Change the heading to “Class optional”. Change the
stable tag to optional.class (following the style of
any.class, etc).

US 180 20.7.2 ed The heading for this section is “variant of value
types”, yet there are no specializations (partial or
otherwise) of this variant class or other variant
classes defined in the standard.

Change the heading to “Class variant”. Change the
stable tag to variant.class (following the style of
any.class, etc).

US 181 1 20.7.2 te Support for void alternatives in variant is inconsistent.
Incomplete types are normally disallowed in variant.
20.7.2.1 states that “When an instance of variant
holds a value of alternate type T, it means that a
value of type T [snip] is allocated within the storage of
the variant object”; this implies that variant requires its
alternatives of object type to be complete types (the
size of which can be determined). Thus, it is illformed
to try to construct a variant<monostate, Incomplete> v
(where Incomplete is an incomplete type) because we
cannot determine the size needed to store
Incomplete. However, variant allows (possibly cv-
qualified) void as an alternative type. Since void can
never be completed (3.9.1) it seems that variant just
assumes it has a size of 0 and requires no storage.
However, you cannot copy, move or swap a variant
with an alternative of void type.

• Disallow void alternative types as they are
incomplete or

• Rely on the fact that void alternatives take
no part of the embedded storage and
ignore them when a complete type would
otherwise be required.

US 182 26.8.5 ed One of the types given in the signature of
inner_product() is “Inputgterator” [sic].

s/Inputgterator/InputIterator/

US 183 25.1
and 26.8.1

 ge The current wording of the standard makes it very
tricky to determine whether an algorithm has a
parallel (e.g. ExecutionPolicy) overload. The header
synopses for <algorithm> and <numeric> list the
ExecutionPolicy overloads, but the definitions do not
list the overloads (which can be understood by

• Add ExecutionPolicy overloads to all the
relevant definitions, or

• Add a note in the definition of all algorithms
which do not have ExecutionPolicy
overloads stating that they have no such

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments Date: Oct 12, 2016 Document: SC22 N5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/ Table/
(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of
the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 40 of 41
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

reading 25.2.5.2, which essentially states that unless
noted otherwise, the ExecutionPolicy overloads have
the same semantics and are thus not listed in the
definitions). This makes it hard to determine whether
an algorithm has an ExecutionPolicy overload. For
example, 25.3.1, which defines all_of(), does not list
an ExecutionPolicy overload, but all_of() does have
such an overload. On the other hand, 25.5.6.1, which
defines push_heap(), also does not list an
ExecutionPolicy overload, and push_heap() does not
actually have such an overload.

overload (e.g. accumulate(), push_heap).
• Add a table listing all the algorithms in

<numeric> and <algorithm> which do have
ExecutionPolicy overloads, or

• Add a table listing all the algorithms in
<numeric> and <algorithm> which do not
have ExecutionPolicy overloads.

US 184 26.8.1 te An ExecutionPolicy overload for inner_product() is
specified in the synopsis of <numeric>. Such an
overload seems impractical. inner_product() is
ordered and cannot be parallelized; this was the
motivation for the introduction of transform_reduce().

Delete the ExecutionPolicy overload for
inner_product().

US 185 27.10.7 te The filesystems library provides two function
signatures for (most, possibly all) of the free functions
in its interface; one signature which takes a reference
to an error_code (reporting errors by assigning to the
reference and returning) and one which does not
(reporting errors by throwing an exception). In
addition to adding a large number of overloads, this
approach makes it very tedious for programmers to
write generic functions which use the filesystem
library. If the author of such a function wishes to
provide both error_code and exception-throwing
interfaces (in the same way the filesystem library
does), two different versions of the generic function
must be written. This may also be a burden to
implementers.

Define a global error_code object called std::throws,
and change all the function signatures in the
filesystem library to have the form R f(/*…*/,
error_code& ec = throws). If an error occurs in the
function, if ec is the same object as throws (&ec =
&throws), then an exception is thrown. Otherwise,
an error code is created and assigned to the
reference ec. This should not change the interface
or error handling behaviour of the filesystem library.
This approach has been used in the HPX library and
(IIRC) the Boost libraries including
Boost.Filesystem..

End

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 1 1.1 p2 Te Paper P0063R3 changed our normative
reference to C to refer to C11 not C99, but
missed one important reference: in
[intro.scope](1.1) paragraph 2, where we define
the term "C standard", we still define it as
referring to C99 rather than C11.

It seems correct to also update that reference to
refer to C11, *except* that we will need
corresponding updates to [diff.iso] (Annex C.1) to
describe the C11 language features not available
in C++.

GB 2 1.2 (1.1) Te The latest ECMAScript standard was released in
June 2016, while the current CD references the
1999 Third Edition. ECMAScript is used only to
define the default grammar for regular
expressions.

Update the reference in (1.1) to ECMA-262
ECMAScript 7th Edition/June 2016, or to the last
revision adopted by ISO, ISO 16262:2011.
Update the section reference in "Table 127 -
regex_constants::match_flag_type effects…" for
format_default
Review [re.grammar]

GB 3 1.2 (1.5) Te Latest POSIX standard is ISO/IEC 9945:2009/Cor
1:2013, rather than the 2003 standard referenced
here. The current document uses POSIX to
define some error constants, define filesystem
operations, and define several regular expression
grammars.

Update the POSIX reference to ISO/IEC
9945:2009/Cor 1:2013.
Consider any updates to [cerrno.syn], the errc
enumerators in [system_error.syn] and additional
concerns for [filesystems]

GB 4 1.2 (1.6) Te ISO standards are only supposed to have
normative references to the latest version of other
ISO standards, yet the C++17 CD still refers to
ISO/IEC 10646-1:1993, Information technology —
Universal Multiple-Octet Coded Character Set
(UCS)— Part 1: Architecture and Basic
Multilingual Plane.

Update 1.2 [intro.refs] to the current 10646
standard and make any necessary subsequent
changes to wording.

GB 5 1.3.17 Ge The definition of the term template parameter
should be more than naming a single grammar
term, to help distinguish it from all the other
definitions of 'parameter' that include a plain-
english description

Enhance the definition of 'parameter' with a plain
English description of a template parameter.

GB 6 1.3.25 Ge The definition of undefined behavior does not
allow for the requirement that 'constexpr'
functions are required to diagnose undefined
behavior in constant evaluation contexts. This
also affects what we say for SFINAE: you get a

Add the extra requirement for constexpr

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

substitution failure if the substituted type *would
be* ill-formed (but you don't actually form it in that
case, so the program is not ill-formed); you get a
non-constant expression if the evaluation *would
have* undefined behaviour (but you don't actually
evaluate it in that case, so the behaviour is not
undefined).

GB 7 1.8 (3.3) Ed The 3rd bullet is confusing, as it is not clear
where a smaller array would come from

Provide an example of where a smaller array
would come from:

struct A {
 unsigned char a[32];
};
struct B {
 unsigned char b[16];
};
A a;
B *b = new (a.a + 8) B;
int *p = new (b->b + 4) int;

Here, two array objects satisfy the first two
bullets for the int object denoted by *p,
namely a.a and b->b. The third bullet says
that b->b provides storage for the int but
a.a does not.

GB 8 1.8 5 Ed The definition of 'complete object' is confusing: "If
x is a complete object, then x is the
complete object of x. Otherwise" … with the
inference that if otherwise is not triggered, the
former must have been true.

Clarify the two uses of complete object in the
sentence, perhaps "If x is a complete object,
then the complete object of x is itself."

GB 9 1.8 7 Te base class objects of zero size is a misleading
term, as ‘sizeof’ such an object is non-zero. Size
should not be a property of an object, rather than

A better statement is that ‘empty’ base class
objects can share the address of a non-
empty sub-object, so reword to talk about

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

a type. base class sub-objects sharing storage,
rather than having zero size.

GB 10 1.11 Ge ECMAScript is a registered trademark of ECMA,
and should be added to our list of
acknowledgements.

Add a new paragraph: ECMAScript is a
registered trademark of Ecma International.

GB 11 1.7 Ed While the number of bits in a byte is
implementation-defined, it is also exposed directly
in code as the CHAR_BIT macro in <limits.h>
from the C library,and <climits> in the C++ library.

Add a footnote pertaining to "the number of
which is implementation-defined" saying "The
number of bits in a byte is reported by the
macro CHAR_BIT in the header <climits>."

GB 12 Ge The BSI would like to ensure that outstanding
issues on the issues lists are all considered
before the final IS is produced.

GB 13 5.2.3 p2 Te The wording for template parameter
deduction for constructors allows:

 template-name foo(a,b,c);
 template-name foo{a,b,c};
 template-name(a,b,c)

… but not …

 template-name{a,b,c}

(as the wording in 5.2.3p2 only covers the
case of a template-name followed by a
parenthesized expression-list)

Add wording to 5.2.3p2 to allow the
problematic case:

A template-name corresponding to a class
template followed by a parenthesized
expression-list<ins> or by a braced-init-
list</ins>...

GB 14 5.3.2 Te C++17 removed pre-incrementing on objects
of type bool. However, the last sentence in
5.3.2 was not changed to reflect this: "If x is
not of type bool, the expression ++x is
equivalent to x+=1".

Change the last sentence in 5.3.2 to "The
expression ++x is equivalent to x+=1."

GB 15 5.1.5 18 Te CWG 2011 fixes a regression from C++14,
introduced by the resolution of CWG 2012.
This regression causes many existing

Accept the proposed wording for CWG 2011
or similar wording that permits references
captured by reference to be used outside

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

C++14 programs to have undefined behavior
in C++17. Example:

auto f(int &r) { return [&]{++r;}
} void g(int n) { f(n)(); }

their lifetime.

GB 16 7 8 Te Decomposition declarations are allowed at
namespace scope, so it should be possible
to specify their linkage.

Allow static, extern, thread_local, and inline
specifiers, or disallow decomposition
declarations at namespace scope.

GB 17 7 8 Te Decomposition declarations only allow cv
qualifiers and auto in the decl-specifier-seq.
There seems to be no reason to disallow
constexpr, and it would be useful to allow it.

Permit constexpr specifier.

GB 18 8.5 1 Te The rules for auto deduction and template
argument deduction do not match the rules
for decomposition declarations when the
initializer is an array.

int some_array[3];
auto [a, b, c] = some_array; //
deduces int[3]
auto x = some_array; // deduces
int*

This prevents reliable refactoring of auto
[a, b, c] = e; into auto x = e;
auto &[a, b, c] = x; and makes the
rules for auto deduction unnecessarily
complex.

Remove the special case for copying arrays
by value in decomposition declarations.

GB 19 8.6.3 5 Te This code used to be valid and is now ill- When a temporary object is materialized so a
reference to cv T can bind to it, the created

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

formed:

const int &r = 1;
constexpr int n = r;

because p0135's changes to [dcl.init.ref]
don't provide proper cv-qualification for the
created temporary object.

temporary object should be qualified by cv.

GB 20 8.5 3 Te If the user specializes tuple_size for their
type, but messes up the definition of value
somehow:

 template<> struct
std::tuple_size<MyPair> {
 const int value = 2;
 };

we will silently fall back to memberwise
decomposition. This is user-hostile.

Commit to the tuple-like interpretation if
tuple_size<E> is a complete type.
Change 8.5/3 to:

"Otherwise, if the qualified-id
::std::tuple_size<E> names a complete type,
the expression ::std::tuple_size<E>::value
shall be a well-formed integral constant
expression and the number of elements in
the identifier-list shall be equal to its value.
[…]"

GB 21 13.3.1.8 1.1 Te The addition of implicit deduction guides
causes class template argument deduction
to silently do the wrong thing in many cases,
including some in the standard library. Fixing
a bad deduction in a later version of a library
is a breaking change if anyone is using the
bad deduction. For example, with the current
standard wording, std::tuple(a, b, c)
and std::make_tuple(a, b, c) will do
different things in some cases.

Delete bullet 1 of 13.3.1.8/1, removing
implicit deduction guides from constructors of
the primary template.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Once we ship this, we would not be able to
change std::tuple(a, b, c) to match
make_tuple without risk of breaking
existing code.

GB 22 15 3 This sentence twice refers to "exceptions
raised while destroying" objects, but the term
is not defined - exceptions are thrown, not
raised. This also affects Table 29 - Allocator
Requirements on the 'a.allocate. row, and a
Note in 30.3.1.3p1 [thread.thread.destr].

Change all uses of 'raise' and 'raised', where
they apply to exceptions, to 'throw' and
'thrown'.

GB 23 15.3 2 Te As functions and arrays decay to pointers
when thrown, it is not possible to catch such
a type by reference. This is partially
acknowledged by the implicit function/array-
to-pointer decay that occurs in a handler.
Ideally it should be ill-formed to write such a
handler, to avoid unusual mistakes;
otherwise, it would merit a note that such
nonsensical handlers are allowed for code
like:

template <typename T>
void test() {

try {

T t = {};
throw t;

}
catch(T const &) {
}

Add a note with the example from this
comment.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

}

test<int[8]>(); will not catch the
'int *' exception

GB 24 15.3 4 Ed The given example for a handler that cannot
be entered is invalid, as a handler for a
derived class can still be activated after the
handler for an ambiguous base.

Add 'final' and 'unambiguous public' to the
example:

"for example by placing a handler for a
<ins>final</ins> derived class after a handler
for a corresponding <ins>unambiguous
public</ins> base class."

GB 25 15.1 7 Te If an exception is rethrown, it might also
want to call terminate for a function exiting
by an exception. Destructors are already
covered by separate wording, but I believe a
copy-constructor in a handler that catches
by value relies on this clause to trigger the
'terminate' call.

However, this highlights a problem with the
current wording when such a copy
constructor throws and catches an exception
by calling a function that throws from within
the constructor's compound statement.

Add wording to cover the additional case.

GB 26 15.1 4 Te Which active handler is the 'last' when two
threads are handling the same exception
object? Is there some implicit sequencing
relation between handlers in different
threads? A potential data race, if both
threads think they are 'last' and destroy the
same object? A potential leak as neither
thinks it is 'last'? There is also a question of
whether exception_ptr destructors for
the same exception object synchronize with

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

each other (even in the case where the
count does not drop to 0).

GB 27 15.5.3 Te exception_ptr and rethrow_exception allow
the same exception object to be active
multiple times in the same thread. It is not
clear if 'uncaught_exceptions' should count
such cases as a single exception object, or
should count each activation of the same
object in the current thread.

GB 28 17 Te The C++ standard library provides many
`constexpr` global variables. These all
create the risk of ODR violations for innocent
user code. This is especially bad for the new
`ExecutionPolicy` algorithms, since their
constants are always passed by reference,
so any use of those algorithms from an inline
function results in an ODR violation.

This can be avoided by marking the globals
as `inline`.

Add inline specifier to:
— bind placeholders _1, _2, …
— nullopt, piecewise_construct,
allocator_arg, ignore
— seq, par, par_unseq in <execution>

GB 29 17.3.2
17.3.26

 Ed The definition of blocking is part of the
execution model defined in 1.9, so this
definition should move to clause 1, which
covers the whole standard and not just the
library.

Move subclauses [defns.block] and
[defns.unblock] under section 1.3 [intro.defs].

GB 30 17.3.17 Te The definition of 'object state' applies only to
class types, implying that fundamental types
and arrays do not have this property.

Replacing "an object state" with "a value of
an object" in 17.3.27 and dropping the
definition of "object state" in 17.3.17

GB 31 17.3.25 Ed The term character traits appears to be
defined in a non-normative note.

Provide a distinct clause to define the term
character traits, change the term to non-italic
so it does not appear to be a definition, or
add a cross-reference if it is calling out a
specific existing definition of the term.

GB 32 17.4 Ed This subclause does not deserve a separate
title, number, and stable-name. It would

Move 17.4 [defns.additional] p1 as a [Note:],
forming the new p1 of 17.3 [definitions], and

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

serve better as a [Note:] at the top of the
preceding clause, which provide the
definition of terms for the library.

remove the corresponding title and stable
name.

GB 33 17.5.2.3 3 Ed Is 'external behavior' a well-defined term, or
is 'observable behavior' the intent?

Replace 'external behavior' with 'observable
behavior'.

GB 34 17.6.1.1 1 Ed Macros are not entities, see 3p3 [basic] for
the definition. A better way to say this should
be found, or perhaps a footnote against the
macro term, to grandfather the casual library
usage here.

There's another (different) list of what's in the
library in 1.5p2 ("templates, classes,
functions, constants, and macros"). Neither
list seems complete.

Perhaps we could use "entities and macros"
in both 1.5p2 and 17.6.1, strike 17.6.1.1p1,
and then strike "macros" from 17.6.1.1p2?

GB 35 17.6.5 Te Most implementations have poor testing and
support for instantiating standard library
templates with volatile-qualified types. We
should grant a library-freedom to conforming
implementations so that support for volatile
(and const volatile) qualified types in
standard library templates is not required
unless explicitly specified - and mandate
such support for all templates in the
<type_traits> header. Additional support is
already specified in most places we would
be interested (e.g., tuple API). We may want
to additionally guarantee support through
forwarding references.

add a new 17.6.5.x Volatile Qualified Types
[res.on.volatile.type] describing the intended
level of support for volatile qualifiers.

GB 36 17.6.5.11 (3.2) Te For bullet (3.2), no base classes are
described as non-virtual. Rather, base
classes are not specified as virtual, a subtly
different negative.

Rewrite bullet 3.2:

Every base class not specified as virtual shall
not be virtual;

GB 37 17.7 Ed The whole structure of the library clauses,
explicitly documented in 17.1
[library.general], precluded specifying library
headers in clause 17. This C header should

Move this to clause 18

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

be documented either in clause 18, clause
20, or split between the two, with the parts
mandatory for a free-standing
implementation at least appearing in clause
18.

GB 38 17.6.5.6 Te Relax the prohibition on libraries adding
constexpr; this was a constraint requested
by library implementers when constexpr was
new, and those same implementers now feel
unduly constrained.

Rewrite the whole sub-clause to support
libraries adding constexpr in a compatible
manner, much like the freedom to add a
noexcept specification.

GB 39 17.6.5.4 4 Ge The example is supposed to highlight the
'otherwise specified' aspect of invoking ADL,
yet there is no such specification. It is
unlikely that we intend to explicitly qualify
calls to operator functions, so they probably
should be exempted from this restriction.

Fix example (and referenced clause) to
specify use of ADL, or exempt operators from
this clause, and find a better example,
probably using swap.

GB 40 17.6.5.12 Footnote
189

Ge The freedom referenced in footnote 189 was
curtailed in C++11 to allow only non-
throwing specifications. The footnote is both
wrong, and unnecessary.

Strike footnote 189

GB 41 17.6.5.12 2,4 Te The "any other function" sentence in p4
contradicts the restriction placed in p2.

Strike the third sentence of p4, starting with
"Any other function…". Consolidate its
implementation-defined requirements into p2,
along with footnote 188.

GB 42 17.6.5.12 Footnote
188

Ge The word 'should' makes footnote 188 sound
like normative encouragement, if not an
actual mandate.

Either use a non-loaded word, such as
"typically", or move footnote 188 directly into
the main text.

GB 43 17.6.5.12 1,4 Ed The freedom to add exception specifications
is repeated in p1 and p4, in slightly different
terms, highlighting the dangers of
redundancy in a specification.

Consolidate the two sentences into a new p5,
as per p0003r5.

GB 44 20 Te P0067R3 was moved at Oulu but not applied
to the working paper due to a major
technical error discovered by the project
editor (the signatures in the synopsis for

Apply the revised wording in P0067R4

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

from_chars did not match the detailed
wording).

GB 45 20 Te If P0067R4 is applied consider how to parse
hexadecimally:

to_chars(beg, end, 42, 16); 16 for
hex
to_chars(beg, end, 4.2, true);
true means hex
to_chars(beg, end, 4.2,
chars_format::hex);
to_chars(beg, end, 4.2,
chars_format::hex, 2);

That is: We have 3 different formats to
specify hex depending on value types and
whether to use precision.
Which application programmer should
remember this?

May be even worse (I am not sure):

 to_chars(beg, end, 4.2, 16);

would silently convert 4.2 to 4 and

 to_chars(beg, end, 4,
chars_format::hex);

would silently convert 4 to 4.000000.

The various options should be harmonized,
possibly by use of an extended enum
approach, having the values:

 dec, hex, scientific, fixed, general

with dec (new!) as default for integral values
and general for floats

GB 46 20.2 Te in_place_tag is an implementation detail that
should not be exposed to the user.

The declaration should be marked as
exposition-only to allow implementors to use
a name in the implementation namespace
(such as __in_place_tag) for the type.

GB 47 20.11.2 Ed The approval of P0220R1 should have Apply the changes from P0414R1.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

added shared_ptr<T[]> and
shared_ptr<T[N]> support to C++17, but due
to editorial conflicts the change didn't get
applied to the WP.

GB 48 20.19.7
[parallel.exe
cpol.objects]

 Ed [parallel.execpol.objects] is a subclause of
[execpol] and is adjacent to [execpol.par],
[execpol.vec] etc.

There is no reason for it to have the prefix
"parallel".

Change name [parallel.execpol.objects] to
[execpol.objects].

GB 49 20.6.5
[optional.ba
d_optional.a
ccess]

 Te https://issues.isocpp.org/show_bug.cgi?id=7
2 suggests changing the base class of
std::bad_optional_access, but the issue
appears to have been forgotten.

Address LEWG issue 72, either changing it
for C++17 or closing the issue.

GB 50 20.17.5
[time.duratio
n], 20.17.6
[time.point]

 Te The reference implementation in P0092R1 is
non-conforming, because it uses ++t in the
body of round(const duration<R,P>&)
and that member function is not constexpr. A
conforming implementation must do t = t
+ ToDuration?(1) or t =
ToDuration?(t.count() + 1). The
straightforward increment should work in
constant expressions.

Make all the member functions of duration
and time_point constexpr.

GB 51 20.14.3
[func.invoke]

 Te The function template std::apply() in
[tuple.apply] is required to be constexpr, but
std::invoke() in [func.invoke] isn't. The most
sensible implementation of apply_impl() is
exactly equivalent to std::invoke(), so this
requires implementations to have a
constexpr version of invoke() for internal
use, and the public API std::invoke, which
must not be constexpr even though it is
probably implemented in terms of the
internal version.

Add 'constexpr' to std::invoke.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 13 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 52 20 Ed There are several new stable names that are
unnecessarily long, (and use underscores
which look quite ugly due to the formatting of
stable names). For example
[optional.bad_optional.access], which could
be called [bad.optional.access] or
[optional.bad.access] instead.

As an example of a sensible name, see
[time.point] which is not called
[time.time_point] even though that would be
the "obvious" choice.

Other culprits are
[memory.polymorphic.allocator.class],
[memory.resource.monotonic.buffer.ctor],
and
[func.searchers.boyer_moore_horspool.crea
tion]

Most of these seem to be in Clause 20, but
there are other examples in other Clauses.

Review stable names for new clauses added
since C++14. Consider abbreviating them
instead of using complete unabridged class
names.

GB 53 20.14.3
[func.invoke]

 Te std::invoke can be made trivially noexcept
using the new std::is_nothrow_callable trait:

Add the exception specifier
noexcept(is_nothrow_callable_v<F(Args&&…
)>) to std:invoke

GB 54 20.8.2
[any.bad_an
y_cast]

 Te There is no specification for
bad_any_cast.what.

Add a paragraphs:

const char* what() const noexcept override;

 Returns: An implementation-defined
NTBS.

 Remarks: The message may be a null-
terminated multibyte string (17.5.2.1.4.2),

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 14 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

suitable for conversion and display as a
wstring (21.3, 22.4.1.4).

GB 55 20.13.6 Te It is becoming more and more apparent that
using a function type as the template
argument to result_of causes annoying
problems. That was done because C++03
didn't have variadic templates, so it allowed
an arbitrary number of types to be smuggled
into the template via a single parameter, but
it's a hack and unnecessary in C++ today.
result_of<F(Args…)> has absolutely nothing
to do with a function type that returns F, and
the syntactic trickery using a function type
has unfortunate consequences such as top-
level cv qualifiers and arrays decaying
(because those are the rules for function
types).

It might be too late to change result_of, but
we should not repeat the same mistake for
std::is_callable.

Possibly get rid of the
is_callable<Fn(ArgTypes?…), R>
specialization. Change the primary template
is_callable<class, class R =
void> to is_callable<class Fn,
class.. ArgTypes?> and define a
separate template such as
is_callable_r<class R, class Fn,
class… ArgTypes?> for the version that
checks the return type. The resulting
inconsistency might need to be
resolved/improved upon.

GB 56 20.5.2.6 4 Te #include <utility>
struct X { int a, b; };
const auto [x, y] = X();

results in a hard error, because it attempts to
instantiate std::tuple_size<const X>,
which is not SFINAE-friendly. If the
#include or const is removed, the code
works.

One option is to resolve LWG issue 2770:
make std::tuple_size<const T>
SFINAE-friendly. Do not define a member
named value if
std::tuple_size<T>::value is not well-
formed.

Alternatively a core language change could
be made.

GB 57 22.5
[locale.stdcv
t]

 Ge The contents of <codecvt> are
underspecified, and will take a reasonable
amount of work to identify and correct all of
the issues. There appears to be a general
feeling that this is not the best way to

Deprecate and move the whole of clause
22.5 [locale.stdcvt] to Annex D.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 15 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

address unicode transcoding in the first
place, and this library component should be
retired to Annex D, along side <strstream>,
until a suitable replacement is standardized

GB 58 23.2.4
[associative.
reqmts]

Table 86 -
Associative
Container
Requiremen
ts

Te P0083R3 adds new member functions which
return 'insert_return_type', which has at least
three members. It would be convenient to be
able to use the type with a decomposition
declaration: auto[ins, pos, node] =
m.insert(std::move(n));
Because the precise number of members
and their order is unspecified, and it isn't a
pair or tuple, that isn't guaranteed to work.
A custom return type was used because
pairs and tuples do not have descriptive
names for their members, but structured
bindings make it convenient to give custom
names to the members (although their order
must still be known).

Consider adding overloads of tuple_size/get
etc. that do the right thing for
UniqueAssocContainer::insert_return_type
structs, or returning a tuple, or returning a
struct with named fields, instead.

GB 59 24.6.3
[istreambuf.i
terator]

 Te There is no specification for
istreambuf_iterator::operator→. This
operator appears to have been added for
C++11 by LWG issue 659, which gave the
signature, but also lacked specification.

Add specification

GB 60 27.5.4.2
[fpos
requirement
s]

Table 108 Ge The requirements on the 'stateT' type used
to instantiate class template 'fpos' are not
clear, and the following Table 108 - Position
type requirements is a bit of a mess. This is
old wording, and should be cleaned up with
better terminology from the Clause 17
Requirements. For example, 'stateT' might
be require CopyConstructible?,
CopyAssignable?, and Destructible. Several
entries in the final column of the table
appear to be post-conditions, but without the
'post' markup to clarify they are not

Clarify the requirements and the table

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 16 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

assertions or preconditions. They frequently
refer to identifiers that do not apply to all
entries in their corresponding 'Expression'
column, leaving some expressions without a
clearly defined semantic.

If 'stateT' is a trivial type, is 'fpos' also a
trivial type, or is a default constructor not
required/supported?

GB 61 30.4.2.1
[thread.lock.
guard]

 Te P0156R0 changed std::lock_guard<T> to
std::lock_guard<T…>

This is an ABI break, because the mangled
name of the type changes.

lock_guard is not movable, so is unlikely to
appear in function signatures, but the
change would break binary compatibility for
any API which took a lock_guard by
reference (e.g. where a function must only
be called while a lock is held, and the lock is
passed in as "evidence" of the lock).

Whether the benefit of the change is worth
an ABI change should be considered.

Revert the changes from P0156R0. A
separate type could be added for the variadic
case.

GB 62 30.6.7
[futures.shar
ed_future]

3 Te There is an implicit precondition on most
shared_future operations that 'valid() ==
true', 30.6.7p3. The list of exempted
functions seems copied directly from class
'future', and would also include copy
operations for shared_futures, which are
copyable. Similarly, this would be a wide
contract that cannot throw, so those
members would be marked noexcept.

Revise p3:

"The effect of calling any member function
other than the move constructor, the copy
constructor, the destructor, the move-
assignment operator, the copy-assignment
operator, or valid() on a shared_future object
for which valid() == false is undefined." …

Add noexcept specification to the copy

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 17 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constructor and copy-assignment operator, in
the class definition and where those
members are specified.

GB 63 Annex B Ge What is recommended limit for number of
captures in a lambda expression? Suggest
using the same number as number of
arguments to a function call, but could
alternatively be the number of members
allowed in a class.

Add to Annex B:

Lambda-captures in one lambda expression
[256].

GB 64 Annex B Ge what is recommended limit for number of
comma-separated expressions in an
initializer list?

Add to Annex B:

Initializer-clauses in a braced-init-list [1024].

GB 65 Annex B Ge How many variables can be defined in a
decomposition declaration? Should this be
similar to the identifier-list limit for macros, at
255, or closer to the number of local
variables that can be declared in a function,
1024?

Add to Annex B:

Variables defined by a single decomposition
declaration [256].

GB 66 Annex C
[diff.cpp11.b
asic]

 Ed [diff.cpp11.basic] in Annex C makes no
mention of needing to replace sized delete if
you replace non-sized delete, otherwise you
get undefined behaviour.

Document the change from C++11.

GB 67 Annex E Ed Annex E (normative) Universal character
names for identifier characters [charname]

This Annex is only referenced in the
standard in one place - 2.10 [lex.name]. As
such, it adds little value as an Annex.

Move the contents of Annex E into 2.10
[lex.name]

GB 68 3.9
[basic.types]

 Te The term 'literal type' is dangerous and
misleading, as text using this term really
wants to require that a constexpr
constructor/initialization is called with a
constant expression, but does not actually
tie the selected constructor to the type being
'literal'.

Verify the uses of the term in the Core and
Library specifications and replace with
something more precise where appropriate.

1Template for comments and secretariat observations Date: 2016-09-16 Document: SC22 WG21 N4604 Project: CD 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 18 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 69 20.7.11
[variant.has
h]

p1 Ge The paragraph is really trying to say two
different things, and should be split into two
paragraphs, using standard terminology.

The first sentence should become a
Requires: clause, as it dictates requirements
to callers.

The second sentence should be a Remarks:
clause, at is a normative requirement on the
implementation.

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 1 of 3
ISO electronic balloting commenting template/version 2001-10

RU 1 8.6 [dcl.init] paragraph 7 te Make empty or fully-initialized const objects default
initializable. From the user's point of view all the following
structures have their variables initialized, so the
behaviour must be consistent:
struct A0 {};
const A0 a0; // currently ill-formed

struct A1 {
 A1(){}
};
const A1 a1;

struct A2 {
 int i;
 A2(): i(1) {}
};
const A2 a2;

struct A3 {
 int i = 1;
};
const A3 a3; // currently ill-formed

This issue was reported as the DR 253 http://www.open-
std.org/jtc1/sc22/wg21/docs/cwg_active.html#253.

If a program calls for the default-initialization of an
object of a const-qualified type T, T shall be a
class type with either a constructor that initializes
all subobjects or a user-provided default
constructor.

RU 2 20.15.2
[meta.type.s
ynop]

paragraph 2 te Failed prerequirement for the type trait must result in ill-
formed program. Otherwise hard detectable errors will
happen:

Add to the end of the [meta.type.synop] section:
Program is ill-formed if precondition for the type
trait is violated.

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 2 of 3
ISO electronic balloting commenting template/version 2001-10

#include <type_traits>

struct foo;

void damage_type_trait() {
 // must be ill-formed
 std::is_constructible<foo, foo>::value;
}

struct foo{};

int main() {
 static_assert(
 // produces invalid result
 std::is_constructible<foo, foo>::value,
 "foo must be constructible from foo"
);
}

RU 3 23.3.7.1
[array.overvi
ew]

paragraph 3 te Force the literal type requirement for the iterator and
const_iterator in the std::array so that iterators of
std::array could be used in constexpr functions.

Add to the end of the [array.overview] section:
iterator and const_iterator shall be literal types.

RU 4 21.2.3.1
[char.traits.s
pecialization
s.char]
21.2.3.2
[char.traits.s
pecialization
s.char16_t]
21.2.3.3

 te It is confusing to see a class that is marked with
constexpr but is not usable at compile time.
std::string_view uses std::char_traits in many constexpr
methods and functions. Many std::char_traits functions
are not constexpr. At least std::char_traits::find,
std::char_traits::length and std::char_traits::compare
functions must be marked with constexpr.

As proposed in P0426R0, add constexpr for
functions std::char_traits::find,
std::char_traits::length and
std::char_traits::compare in all the 21.2.3.*
[char.traits.specializations.*] sections:
static constexpr int compare(const char_type* s1,
const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 3 of 3
ISO electronic balloting commenting template/version 2001-10

[char.traits.s
pecialization
s.char32_t]
21.2.3.4
[char.traits.s
pecialization
s.wchar.t]

static constexpr const char_type* find(const
char_type* s, size_t n, const char_type& a);

RU 5 all all ge Writing comparisons for user defined classes is error
prone and requires a lot of trivial typing, so it must be
done by compiler when possible.

Fix that by continuing the work on "P0221R2:
Proposed wording for default comparisons" or at
least by accepting proposals that use user defined
operator< and operator == to generate the
remaining comparison operators.

RU 6 all all ge The adoption of the "constexpr if-statements" changes
from document P0292R2 is a step in the right direction for
code simplification.

Preserve the functionality and think of extending it
in the future (for-constexpr statements, switch-
constexpr statements).

Template for comments and secretariat observations Date: 2016-10-15 Document: SC 22 N 5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 1 1.1 2 ed It is proposed that “C++17 should refer to C11
instead of C99” in P0063 and this proposal is
accepted.
So it needs to change the base C programming
language to C11 from C99.

C++ is a general purpose programming language
based on the C programming language as
described in
ISO/IEC 9899:1999 2011 Programming
languages — C

JP 2 3.2 6 ed The subclause , “The inline specifier”, was added
by P0836 and the description of inline function
was moved to this subclause.
So it needs to change the reference to
7.1.6[dcl.inline] from 7.1.2[dcl.fct.spec].
In addition, it needs to add the reference of `inline
variable with external linkage'.

There can be more than one definition of a class
type (Clause 9), enumeration type (7.2), inline
function with external linkage (7.1.2 7.1.6) ,
inline variable with external linkage(7.1.6),

JP 3 3.7 2 ed `operator new' should be replaced by `new-
expression'

The dynamic storage duration is associated with
objects
created with operator new new-expression

JP 4 3.8 (6.5) ed &pb mismatches the comment. &*pb; // OK: pb points to valid memory

JP 5 6 4.4 1/Example ed A semicolon is required at the end. struct X { int n; };

JP 6 5.17 2 ed "function returning T" which was modified to
"function type T" was enclosed in double quotes,
but "function type T" was not enclosed in double
quotes.
(In this sentence, “function type T” is in apposition
to “array of T” and “array of T” is enclosed in
double quotes, but “function type T” is not.)

So it needs to enclose “function type T” in double
quotes.

from “array of T” or “function type T” to “pointer
to T”.

JP 7 8.3.5 5 ed The same as the comment for 5.17/2. any parameter of type “array of T” or of “function
type T” is adjusted to be “pointer to T”.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0063r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf

Template for comments and secretariat observations Date: 2016-10-15 Document: SC 22 N 5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 8 8.4.1 2 ed The paragraph was modified to fix C++ standard
core issue 2145(http://www.open-
std.org/Jtc1/sc22/wg21/docs/cwg_active.html#21
45). Fixing the issue itself is good, but the new
phrase doesn’t look correct. “void declarator ;”
and “declarator ;” are enumerated, but the
former constitutes a function definition and the
latter does not.

Drop the paragraph.
Or, simply “The form of declarator is described in
8.3.5.”

JP 9 8.4.3 4 ed The same as the comment for 3.2/6. A deleted function is implicitly an inline function
(7.1.27.1.6).

JP 10 9.2 7 ed A space is not needed after `T'. struct S {
using T = void();
T * p = 0; // OK: brace-or-equal-initializer
virtual T f = 0; // OK: pure-specifier
};

JP 11 9.4 1 ed `0' should be replaced by `nullptr`. local* p = 0 nullptr; // error: local not in scope

JP 12 10.1 7/Figure 4
— Virtual
base

ed “Figure 4 — Virtual base” is referred to from
10.1/6 but located in 10.1/7. It’s confusing for
readers.

Move figure 4 to inside 10.1/6.

JP 13 11.3 7 ed The same as the comment for 3.2/6. Such a function is implicitly an inline function
(7.1.27.1.6).

JP 14 14.1 8 ed The same as the comment for 5.17/2. A non-type template-parameter of type “array of
T” or of “function type T” is adjusted to be of
type “pointer to T”.

JP 15 15.2 5 ed This deallocation function includes the class
deallocation function.
(There is the reference to 12.5[class.free] in the
language specification of C++14.)

So it needs to add the reference to
12.5[class.free].

If the object was allocated by a new-expression
(5.3.4), the matching deallocation function
(3.7.4.2, 12.5), if any, is called to free the storage
occupied by the object.

http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145
http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145
http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145

Template for comments and secretariat observations Date: 2016-10-15 Document: SC 22 N 5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 16 15.3 2 ed The same as the comment for 5.17/2. A handler of type “array of T” or “function type
T” is adjusted to be of type “pointer to T”.

JP 17 15.4 2 ed The same as the comment for 5.17/2. A type cv T denoted in a dynamic-exception-
specification
is adjusted to type T. A type “array of T”, or
“function type T” denoted in a dynamic-
exception-specification is adjusted to type
“pointer to T”.

JP 18 16.1 8 ed The footnote #148 is across two pages. Locate all #148 sentences in a single page.

JP 19 16.8 1 te It describes “__cplusplus function is defined to
the value 201402L”. The value means C++14, so
it should be changed in C++17

Change 201402L to something appropriate like
2017xx.

JP 20 18.6.4 te The name std::launder() seems cryptic at least for
non-English native speakers. There is no hint in
the word "launder" to show it is about the C++
object model, lifetime, and reusing storage. The
situation is likely same even if a programmer
preliminarily knows about the issues it solves.
Comments like "Here, compilers should suppose
new object at reused storage" will be wanted
each time it is used.
The following function names are better.
- reuse_existing_storage
- suppose_new_at_reused_storage

…

The changes of the label of this chapter and
sample codes are accompanied by this change.

template <class T> constexpr T* launder
reuse_existing_storage(T* p) noexcept;

Template for comments and secretariat observations Date: 2016-10-15 Document: SC 22 N 5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 21 25 ed The order of Requires, Effects and Returns
sections for each function templates are not
consistent in this clause. For some templates,
Requires comes after Effects and even after
Returns. It would be better to describe in a
consistent manner.

Reorder the sections for each algorithm templates
in the same order, as Requires, Effects and
Returns.

JP 22 25.3.10 2 ed j is defined but not used in (2.2) and (2.3). Some
parts of expressions can be replaced with the j.

(2.2) “!(*i == *j)”
(2.3) “pred(*i, *j) == false”

JP 23 25.4.1 ed std::copy_backward and some other algorithms
don’t have parallelized versions. We can know
from the list in 25.1 which algorithms have them,
but it would be better to specify in each
description explicitly.

Add “Remarks: No parallel algorithm overload is
available.” for each algorithm that doesn't have its
parallelized overload.

JP 24 25.5.10 1 ed Effects section for std::next_permutation
describes about the return value, too. But it
should be in Returns section as in
std::prev_permutation.

Replace the 3rd and 4th sentences with a new
paragraph “Returns: true if such a permutation
exists. Otherwise, it transforms the sequence into
the smallest permutation, that is, the ascendingly
sorted one, and returns false.”

JP 25 26.5.7 9 ed Parameter theta of polar has the type of the
template parameter. Therefore, it needs to
change the default initial value to T().
The change of the declaration of this function in
26.5.1 is accompanied by this change.

template<class T> complex<T> polar(const T&
rho, const T& theta = 0T());

JP 26 26.8.5 1 ed There is a typo in the parameter of the second
declaration. (gterator instead of Iterator)

template <class InputIterator1, class InputIterator2,
class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1
last1,
InputgIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

Template for comments and secretariat observations Date: 2016-10-15 Document: SC 22 N 5131 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 27 27.11.1 te In C11- ISO/IEC 9899:2011(E), formatted
input/output functions (with ‘_s’ suffix) are added
as annex K.3.5.3. Those functions promote
safer, more secure programming because they
verify that output buffers are large enough for
the intended result and return a failure indicator if
they are not. Data is never written past the end of
an array. All string results are null terminated.
Those functions also benefit C++. We propose to
add them to C++17.

Add the functions defined in the subclauses of
C11 K.3.5.3.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CA 1 all 18.10.5

18.3.2.4
18.5
18.9
20.2.1
20.2.4
20.14

all te P0270R1 went through SG1 and LWG but was
too late to make it to the straw polls.
The problems it addresses stem from referring to
C11, which came into C++17 at the last minute.
P0270R1 should have made it in with the C11
change.

Apply all of P0270R1, "Removing C dependencies
from signal handler wording", to C++17.

CA 2 all 27.10.8.1
[path.generi
c]

all te root-name is effectively implementation-defined.
As acknowledged by the note under root-name in
the grammar, //is an example of what a root-
name may be.
Should root-name be // for a specific
implementation, the grammar is ambiguous.
The string //a may resolve as either
root-name root-directoryopt relative-pathopt
//root-directoryopt relative-pathopt
//relative-pathopt
//filename
//name

Change under root-name in the grammar of
subclause 27.10.8.1 [path.generic]:
An implementation-defined path prefixoperating
system dependent name that identifies the
starting location for absolute paths.
Add a new paragraph before paragraph 1 of
[path.generic]:
The root-name in a pathname is the longest
sequence of characters that could possibly form a
root-name.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

//a
or
root-directory relative-pathopt
directory-separator relative-pathopt
slash directory-separator relative-pathopt
/directory-separator relative-pathopt
/slash relative-pathopt
//relative-pathopt
//filename
//name
//a

CA 3 all 27.10.8

[class.p

ath]

all te The term “pathname” in 27.10.8 [class.path]

is ambiguous in some contexts.

For details refer to P0430R0 section 2.1.

Add the following specification to 27.10.8.2.1

[path.fmt.cvt]:

 Specifications for path appends, path

concatenation, path modifiers, path decomposition

and path query are in terms of the generic

pathname format. An implementation needs to

make whatever changes necessary to the

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

pathname in native pathname format to produce

the specified change in the generic pathname

format, or return query result for pathname in

terms of the generic pathname format.

CA 4 all 27.10.8.4.1
[path.constr
uct]

all te Extra flag in path constructors is needed to
distinguish whether source is in native pathname
format, or generic pathname format.
For details refer to P0430R0 section 2.2.

Refer to P0430R0 section 2.2.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CA 5 all 27.10.8.1

[path.generi

c]

all te root-name definition is over-specified.
The description of root-name limits its use to be
the starting location for absolute paths. This is
overly restrictive and disregards established
practice where special prefixes on path names is
treated as a trigger for alternate path resolution
on certain operating systems. There are cases
where such alternative path resolution relies on
context from the environment such as the identity
of the current user; therefore, the presence of a
special prefix on a path name is not always
indicative of an absolute path.

For details refer to P0430R0 section 2.3.1.

Modify root-name definition in 27.10.8.1

[path.generic]:

root-name:

An operating system dependent name that

identifies the starting location for absolute paths

can be used to disambiguate the remainder of the

path. [Note: A root-name can be used to identify

the starting location for absolute paths; it can also

be used to invoke alternative pathname resolution.

Many operating systems define a name beginning

with two directory-separator characters as a root-

name that identifies network or other resource

locations. Some operating systems define a single

letter followed by a colon as a drive specifier – a

root-name identifying a specific device such as a

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

disk drive. —end note]

CA 6 all 27.10.8.4.3

[path.appen

d]

all te
 Operator/ (and other append) semantics not useful

if argument has root-name.

 A non-POSIX operating system could design its
generic pathname for native file type to have a
root-name and use it in some creative way. For
example, if argument p has a root-name, then p’s
root-name have to be removed before appending.

Refer to P0430R0 section 2.3.2.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

For details refer to P0430R0 section 2.3.2.

CA 7 all 27.10.15.1

[fs.op.absol

ute]

all te
 Member function absolute in 27.10.4.1 is over-

specified for non-POSIX-like operating system.
For details refer to P0430R0 section 2.4.1.

Modify the specification of absolute function in

27.10.15.1 [fs.op.absolute]:

…

Returns: An absolute path (27.10.4.1) composed

according to Table 122. If status(p).type() is an

implementation-defined file type, then the returned

path is implementation-defined. Otherwise, an

absolute path (27.10.4.1) composed according to

Table 122.

...

CA 8 all 27.10.13
[class.direct
ory_iterator]

27.10.15.3

all te
 Some file system operation functions are over-

specified for implementation-defined file type.
For details refer to P0430R0 section 2.4.2.

Refer to P0430R0 section 2.4.2.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

[fs.op.copy]

27.10.15.14
[fs.op.file_si
ze]

27.10.15.35
[fs.op.status
]

CA 9 all all all ge The present references to UCS2 in the Committee
Draft are appropriate in the interests of preventing
silent breakage of software written to older
versions of C++.

Preserve the references to UCS2 as presented in
the Committee Draft.

CA 10 all all all ge The adoption of the changes proposed in WG21
document P0292R2 (constexpr if-statements) is a
step in the right direction.

Preserve the functionality as presented in the
Committee Draft.

CA 11 all 1.8
[intro.object]

paragraph 3 te Relative to C++14, this CD introduces additional
special behaviour for unsigned char. This is

● Adopt P0257R1, “A byte type for
increased type safety”, with necessary

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

harmful to optimizing existing code, and we would
like to avoid this unwanted outcome.

changes from WG21 review.
● To minimize scope, rename std::byte to

std::storage_byte (or std::raw_byte). This
also avoids confusion, as the proposed
std::byte does not match existing
common uses of the word ‘byte’. Using
‘byte’ as suggested in P0257R1 would go
against “standardizing existing practice”.

● Modify 1.8 [intro.object] paragraph 3 by
replacing “array of N unsigned char”
with “array of N std::storage_byte” (or
std::raw_byte). Adjust examples and
notes accordingly.

CA 12 all 1.8
[intro.object]
3.10
[basic.lval]

various te The status of the following code should be
explicitly indicated in the Standard to avoid
surprise:

 #include <new>

Include an example (and complimentary notes)
indicating that the code presented has undefined
behaviour for the reasons set out herein.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 int bar() {
 alignas(int) unsigned char

space[sizeof(int)];
 int *pi = new (static_cast<void *>(space))

int;
 *pi = 42;
 return [=]() mutable { return

*std::launder(reinterpret_cast<int
*>(space)); }();

}

 In particular, it appears that the call to

std::launder has undefined behaviour because
the captured copy of space is not established to
provide storage for an object of type int
(subclause 1.8 [intro.object] paragraph 1).

 Furthermore, the code has undefined behaviour
also because it attempts to access the stored
value of the int object through a glvalue of an

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

array type other than one of the ones allowed by
subclause 3.10 [basic.lval] paragraph 8.

CA 13 all all all ge As the Committee Draft has already been
shipped, the addition of further major features
(e.g., operator dot, subset of the Concepts TS,
std::exception_list, default comparison operators)
will likely destabilize the document and reduce
consensus.

WG21 is requested to commit to the status quo of
the CD except where there is overwhelming
consensus in support of specific changes. Where
there is a lack of overwhelming support for general
categories of changes, WG21 is requested to
commit to the status quo of the CD.

CA 14 all 20.11.2.2 4 te The removal of the "debug only" restriction for
use_count() and unique() in shared_ptr
introduced a bug: in order for unique() to produce
a useful and reliable value, it needs a
synchronize clause to ensure that prior accesses
through another reference are visible to the
successful caller of unique(). Many current
implementations use a relaxed load, and do not
provide this guarantee, since it's not stated in the
Standard. For debug/hint usage that was OK.
Without it the specification is unclear and

A solution could make unique() use
memory_order_acquire, and specifying that
reference count decrement operations
synchronize with unique(). This won’t provide
sequential consistency but may be useful.

We could also specify use_count() as only
providing an unreliable hint of the actual count, or
deprecate it.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

misleading.

CA 15 all 16.8 1 te __cplusplus is defined to the value 201402L. Update to a date reflecting the expected
ratification year / month.

CA 16

all 20.11.2.6
29.6.5

all te The resolution to LWG2445 “‘Stronger’ memory
ordering” was lost between SG1 and LWG. The
technical issue is minor but often confuses
developers, it would be unfortunate to avoid
resolving it for C++17.

Implement a solution along the lines of p0418r1.

CA 17 all 25.2.4 all ge The behavior of parallel algorithms when an
exception leaves the algorithm is to call
std::terminate. This behavior does not prevent
developers from throwing exceptions, as long as
these exceptions are caught. The behavior has
desirable performance effects for parallel
algorithms.

 This behavior matches that of std::thread and
main when exceptions leave them. It can be

Preserve the functionality from p0394r4, as
adopted in the Committee Draft.

Template for comments and secretariat observations Date: 2016-10-02 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

augmented with policies or executors in future
versions of the Standard without breaking
backwards compatibility with C++17. Notably,
some form of exception list can be added to the
Standard.

 In the meantime, developers can implement their
own exception list in C++17, which would help the
committee standardize their existing practice.

CA 18 all all all ge The Committee Draft has already been shipped,
and the proposal in p0145 was heavily reviewed
in Oulu. Departure from consensus reached for
p0145 on expression evaluation order will likely
destabilize the document and reduce consensus.

 In particular, discussions about performance
impact on user code as well as general
correctness of user code in the face of expression
evaluation order affected voting on p0145.

WG21 is requested to commit to the consensus
reached for p0145 in Oulu plenary, except when
changes to expression evaluation order for C++17
would be in the details and supported with solid
technical reasoning, including performance
evaluation on multiple implementations.
Changes in the scope of the proposal should be
postponed until after C++17.

ISO/IEC CD 14882 Comments Template Date: 2016-09-05 Document: SC22 N5130 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

FI 1 te All open Core Issues should be resolved. As CWG sees fit.

FI 2 te All open Library Issues should be resolved. As LWG sees fit.

FI 3 8.5 te Decomposition declarations do not allow
specifying the type of the identifiers introduced.
This is inconsistent with every other mechanism
for introducing an identifier, and makes large-
scale programming harder.

Either provide a language syntax for specifying the
type of the identifiers, or provide a library facility
for enforcing the type.

FI 4 14.9 te Deduction guides are not integrated to the
standard library. Early attempts to do so have
revealed that implicit deduction guides easily lead
to deducing class template arguments as
references in surprising places, and that implicit
deduction guides make as-if refactorings of library
interfaces harder; such refactorings that used to
be non-detectable now become breaking
changes when implicit deduction guides can be
used. Deduction guides can’t be deleted when
the user wants to turn off certain kinds of
deduction; the proposed work-around is changing
the class template definition, which is rather hard
for code that the user doesn’t own. Explicit
deduction guides are ambiguous with implicit
ones if both match, which makes post-hoc
adaptation hard or impossible.

We should explore ways to make the semantics of
deduction guides less error-prone, and add explicit
deduction guides to the library where applicable.

FI 5 te The proposal p0067, Elementary string
conversions was accepted for C++17 but not
incorporated due to seemingly minor problems in
the specification. Those problems have since
been fixed by a follow-up paper, and the facility
should be incorporated into C++17.

Consider the latest version of the proposal to be
incorporated into C++17.

FI 6 21.4 The class template string_view was adopted into
the working draft without the corresponding user-
defined literal. Such literals have been
implemented as extensions.

Add a user-defined literal for string_view.

FI 7 20 te The proposal p0032 has multiple problems: 1) it
turns member function .empty() into .has_value(),

Keep the .empty() functions (and introduce them
to all the types that are supposed to have a

ISO/IEC CD 14882 Comments Template Date: 2016-09-05 Document: SC22 N5130 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

negating the logic. Refactoring e.g. existing uses
of std::experimental::any to use std::any thus
involve non-trivial refactorings that are error-
prone and can’t be done via simple search-and-
replace if there are containers in the same source
files for which .empty() is used (based on the
implementation experience of making the change
in libstdc++ and refactoring the testsuite). Whilst
any is not a container, the library is failing to go
towards a direction where there would be a
generic way to query for emptiness. 2) The use of
function references for tag types makes the
interface hard to use. The tag types do not have
value semantics like every other tag type has, the
tag types are hard to construct, and present
surprises for certain kinds of overload sets.
Furthermore, any attempts to decay the tag types
produces a really surprising effect – as opposed
to what the other tag types do, which is that the
result of decaying them is the tag type itself,
decaying these new tag types results in a pointer
to function.

homogeneous interface), and make the tag types
be regular tag types that are not references to
functions.

FI 8 30.4.2.1 te The class template lock_guard was made
variadic. This is abi-breaking, and confusing
because one-argument lock_guards have a
typedef mutex_type but lock_guards with more
than one argument don’t. There’s no need to try
to shoehorn this functionality into one type.

Revert the changes to lock_guard, and introduce a
new variadic class template vlock_guard that
doesn’t have the mutex_type typedef at all.

FI 9 20, 30 te The variables of library tag types need to be inline
variables. Otherwise, using them in inline
functions in multiple translation units is an ODR
violation.

Make piecewise_construct, allocator_arg, nullopt,
(the in_place_tags after they are made regular
tags), defer_lock, try_to_lock and adopt_lock
inline.

FI 10 20.6 te Adopt the proposed resolution of LWG 2756 into
C++17, to provide converting constructors and
assignment operators for optional.

Adopt the latest proposed resolution of LWG
2756, which should be available by Issaquah.

FI 11 20.8 te Adopt the proposed resolution of LWG 2744 and
2754 so that std::any can’t be made to hold non-

Adopt the proposed resolution of LWG 2744 and
2754.

ISO/IEC CD 14882 Comments Template Date: 2016-09-05 Document: SC22 N5130 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

copyable types.

FI 12 20.8 te Adopt the proposed resolution of LWG 2509,
which allows any_cast to move when it can.

Adopt the proposed resolution of LWG 2509 into
C++17.

FI 13 20 te Adopt the proposed resolution of LWG 2729,
which makes pair and tuple constructors and
assignment operators reflect the well-formedness
of the constructors and assignment operators of
the elements.

Adopt the proposed resolution of LWG 2729.

FI 14 27.10.12.3 te LWG 2761 should be resolved and the resolution
adopted into C++17, in order to make
directory_entry comparisons non-members, so as
to allow conversions on both sides of the
comparison, which is consistent with other such
operators in the library.

Make the comparison operators of directory_entry
non-members.

FI 15 20.6 te The hash specialization of optional should be a
“poison type” if there is no valid hash for the
element type of optional.

Adopt a solution similar to LWG 2543 for
optional’s hash.

FI 16 20, 23 te Relational operators for containers should sfinae;
if the underlying type is not comparable, neither
should the container be. Same applies to tuple
and pair.

Make the relational operators of containers and
utility components reflect the validity of the
underlying element types.

FI 17 20, 23 te The relational operators of optional and variant
completely reflect the semantics of the element
types; this is inconsistent with other types in the
library, like pair, tuple and containers. If we
believe it’s important that we don’t synthesize
relational operators for wrapper types, we should
believe it’s important for other types as well.
Otherwise comparing containers of floating-point
types and tuples/pairs etc. of floating point types
will give incorrect answers.

Make the relational operators of containers and
utility components reflect the semantics of the
operators for the underlying element types.

FI 18 20.14.15 It was thought that using default_order as the
default comparison for maps and sets was not
abi-breaking but this is apparently not the case.

Revert the change to the default comparison of
maps and sets.

ISO/IEC CD 14882 Comments Template Date: 2016-09-05 Document: SC22 N5130 Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

FI 19 20.10 te The changes in the paper p0414 should be
adopted into C++17.

Adopt the changes in p0414.

FI 20 8.5 te Decomposition declarations do not allow
parentheses-syntax; auto [a, b, c](expr); is not
valid, which is syntactically inconsistent with non-
decomposition declarations.

Allow using parentheses in decomposition
declarations.

FI 21 14.9 te Class templates can’t be constructed with brace-
syntax when class template argument deduction
for constructors is used; templatename{a,b,c} is
not valid.

Allow using braces in such initialization.

FI 22 20.7 te Is it intentional that variant can “hold” a void?
Chances are that it’s useful for using variant as a
typelist, so we’re not recommending changing
that at this point, so this comment is purely to
allow discussion about this aspect.

FI 23 8.5 te Nested decomposition declarations can’t work, as
they clash with the attribute syntax.

Consider changing the syntax for decomposition
declarations, or fixing the problem some other
way.

Template for comments and secretariat observations Date: Document: Project:

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CH 1

all

ge The active issues on the issues lists
shall be addressed before the standard
becomes final. The higher frequency of
standard revisions should not be an
excuse for more bugs.

CH 2

1.9
[intr.exec
ution]

te Clarify volatile Adopt a resolution discussed on the
reflector.

CH 3

20.6
[optional],
20.7
[variant],
20.8 [any]

te The new in_place tags prevent perfect
forwarding. They decay to function
pointers, at which point they are no
longer tags. This makes programming
with them a burden, while the intent was
to simplify it by re-using a common
name.

Re-introduce in_place_t/in_place,
in_place_type_t<T>/in_place_typ
e<T>,
in_place_index_t<I>/in_place_in
dex<I> by reverting this specific part of
p0032r2.

CH 3

20.7
[variant]

te variant allows reference types as
alternatives; optional explicitly forbids
to be instantiated for reference types.
This is inconsistent.

Consider allowing reference types for
both or none.

CH 4

20.7.2
[variant.v
ariant]

te variant<int,void> should be as
usable as variant<int>

CH 5

20.7.2
[variant.v
ariant]

te variant<> should not have an
index() function

Consider specifying a specialization for
variant<> like:

template<> class variant<> {
public:
 variant() = delete;
 variant(const variant&)
 = delete;
 variant&
 operator=(variant const&)

Template for comments and secretariat observations Date: Document: Project:

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 = delete;
};

CH 6

20.7.2
[variant.v
ariant]

te Clarify the intended behavior of
variant for alternative types that are
references.

Add a respective note.

CH 7

20.7.2
[variant.v
ariant]

te Consider making the variant
statically !valueless_by_exception
() for cases where
is_nothrow_move_constructible_
v<T_i> for all alternative types T_i

Adopt section III of P0308R0.

CH 8

20.7.2.1
[variant.ct
or]

te Clarify variant construction. Add a note that variant<> cannot be
constructed.

CH 9

21.4
[string.vie
w]

te The standard library should provide
string_view parameters instead or in
addition for functions defined with char
const * or string const & as
parameter types. Most notably in cases
where both such overloads exist or
where an internal copy is expected
anyway.
It might be doubted that the non-null
termination of string_view could be
an issue with functions that pass the
char * down to OS functions, such as
fstream_buf::open() etc and those
shouldn’t provide it and favour
generating a std::string temporary
instead in that case.
However, std::path demonstrates it is

Provide the overloads for std::regex,
the exception classes, std::bitset,
std::locale and more.

Template for comments and secretariat observations Date: Document: Project:

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

usable to have string_view overloads
and there might be many places where it
can be handy, or even better.

CH 10

25.2.3
[algorithm
s.parallel.
exec]

te Parallel implementations of algorithms
may be faster if not restricted to the
complexity specifications of serial
implementations.

Add a relaxation of complexity
specifications for non-sequenced
policies.

CH 11

25.2.3
[algorithm
s.parallel.
exec]

te It may be useful to copy objects to a
separate space for non-sequenced
policies.

Add explicit allowance for non-
sequenced policies to copy the objects
they work on.

	ISO_IEC CD 14882_SCC_Numbered.pdf
	I In particular, it appears that the call to std::launder has undefined behaviour because the captured copy of space is not established to provide storage for an object of type int (subclause 1.8 [intro.object] paragraph 1).
	I In particular, discussions about performance impact on user code as well as general correctness of user code in the face of expression evaluation order affected voting on p0145.
	I In the meantime, developers can implement their own exception list in C++17, which would help the committee standardize their existing practice.
	T This behavior matches that of std::thread and main when exceptions leave them. It can be augmented with policies or executors in future versions of the Standard without breaking backwards compatibility with C++17. Notably, some form of exception list can be added to the Standard.
	}
	 Operator/ (and other append) semantics not useful if argument has root-name.
	 A non-POSIX operating system could design its generic pathname for native file type to have a root-name and use it in some creative way. For example, if argument p has a root-name, then p’s root-name have to be removed before appending.
	 Member function absolute in 27.10.4.1 is over-specified for non-POSIX-like operating system.
	 Some file system operation functions are over-specified for implementation-defined file type.
	 The present references to UCS2 in the Committee Draft are appropriate in the interests of preventing silent breakage of software written to older versions of C++.
	 The adoption of the changes proposed in WG21 document P0292R2 (constexpr if-statements) is a step in the right direction.
	 The status of the following code should be explicitly indicated in the Standard to avoid surprise:
	 #include <new>
	 int bar() {
	 alignas(int) unsigned char space[sizeof(int)];
	 int *pi = new (static_cast<void *>(space)) int;
	 *pi = 42;
	 return [=]() mutable { return *std::launder(reinterpret_cast<int *>(space)); }();
	 Furthermore, the code has undefined behaviour also because it attempts to access the stored value of the int object through a glvalue of an array type other than one of the ones allowed by subclause 3.10 [basic.lval] paragraph 8.
	 As the Committee Draft has already been shipped, the addition of further major features (e.g., operator dot, subset of the Concepts TS, std::exception_list, default comparison operators) will likely destabilize the document and reduce consensus.
	 The removal of the "debug only" restriction for use_count() and unique() in shared_ptr introduced a bug: in order for unique() to produce a useful and reliable value, it needs a synchronize clause to ensure that prior accesses through another reference are visible to the successful caller of unique(). Many current implementations use a relaxed load, and do not provide this guarantee, since it's not stated in the Standard. For debug/hint usage that was OK. Without it the specification is unclear and misleading.
	 __cplusplus is defined to the value 201402L.
	 The resolution to LWG2445 “‘Stronger’ memory ordering” was lost between SG1 and LWG. The technical issue is minor but often confuses developers, it would be unfortunate to avoid resolving it for C++17.
	 The behavior of parallel algorithms when an exception leaves the algorithm is to call std::terminate. This behavior does not prevent developers from throwing exceptions, as long as these exceptions are caught. The behavior has desirable performance effects for parallel algorithms.
	 The Committee Draft has already been shipped, and the proposal in p0145 was heavily reviewed in Oulu. Departure from consensus reached for p0145 on expression evaluation order will likely destabilize the document and reduce consensus.

