
Doc number: P0514R2
Revises: P0514R0-1, P0126R0-2, and N4195
Date: 2017-10-09
Project: Programming Language C++, Concurrency Working Group
Reply-to: Olivier Giroux <ogiroux@nvidia.com>	

Efficient waiting for concurrent programs

The current atomic objects make it easy to implement inefficient blocking synchronization in C++,
due to lack of support for waiting in a more efficient way than polling. One problem that results,
is poor system performance under oversubscription and/or contention. Another is high energy
consumption under contention, regardless of oversubscription.

The current atomic_flag object does nothing to help with this problem, despite its name that
suggests it is suitable for this use. Its interface is tightly-fitted to the demands of the simplest
spinlocks without contention or energy mitigation beyond what timed back-off can achieve. We
propose to create new specialized atomic operations, and thread synchronization object types, that
likely replace atomic_flag in practice.

A simple abstraction for scalable waiting

Semaphores are lightweight synchronization primitives that control concurrent access to a shared
resource. A binary semaphore, then, is analogous to a mutex with no thread ownership semantics.
This concept is behind our new proposed type: std::binary_semaphore.

Objects of class binary_semaphore are easily adapted to serve the role of a mutex:

 struct semaphore_mutex {
 void lock() {
 s.acquire();
 }
 void unlock() {
 s.release();
 }
 private:
 std::binary_semaphore s(1);
 };

A counting semaphore type is also proposed alongside: std::counting_semaphore, to
regulate shared access to a resource that is not mutually-exclusive but bounded by a maximum
degree of concurrency.

Moving beyond new semaphore types, we propose atomic free functions that enable pre-existing
algorithms expressed in terms of atomics to benefit from the same efficient support behind
semaphores:

 struct simple_lock {
 void lock() {
 bool old;

 while(!b.compare_exchange_weak(old = false, true))
 std::atomic_wait(&b, true);
 }
 void unlock() {
 b = false;
 std::atomic_notify_one(&b);
 }
 private:
 std::atomic<bool> b = ATOMIC_VAR_INIT(false);
 };

Note that in high-quality implementations this necessitates a semaphore table owned by the
implementation, which causes some unavoidable interference due to aliasing of unrelated atomic
updates. For greater control over this sort of interference, we introduce the final type in this
proposal: class condition_variable_atomic.

With this last facility, we can manage false sharing of synchronization state and achieve higher
performance:

 struct improved_simple_lock {
 void lock() {
 bool old;
 while(!b.compare_exchange_weak(old = false, true))
 s.wait(&b, true);
 }
 void unlock() {
 b = false;
 s.notify_one(&b);
 }
 private:
 std::atomic<bool> b = ATOMIC_VAR_INIT(false);
 std::condition_variable_atomic s;
 };

Reference implementation

It’s here - https://github.com/ogiroux/semaphore.

Please see P0514R0, P0514R1, P0126 and N4195 for additional
analysis not repeated here.

C++ Proposed Wording

Apply the following edits to N4687, the working draft of the Standard.

The feature test macro __cpp_lib_semaphore should be added.

Modify 32.2 Header <atomic> synopsis [atomics.syn]
		//	32.9,	fences	
 extern "C" void atomic_thread_fence(memory_order) noexcept;
 extern "C" void atomic_signal_fence(memory_order) noexcept;
	
		//	32.10,	waiting	and	notifying	functions	
 template <class T>
 void atomic_notify_one(const volatile atomic<T>*);
 template <class T>
 void atomic_notify_one(const atomic<T>*);
 template <class T>
 void atomic_notify_all(const volatile atomic<T>*);
 template <class T>
 void atomic_notify_all(const atomic<T>*);
 template <class T>
 void atomic_wait_explicit(const volatile atomic<T>*,
 typename atomic<T>::value_type,
 memory_order);
 template <class T>
 void atomic_wait_explicit(const atomic<T>*,
 typename atomic<T>::value_type, memory_order);
 template <class T>
 void atomic_wait(const volatile atomic<T>*,
 typename atomic<T>::value_type);
 template <class T>
 void atomic_wait(const atomic<T>*, typename atomic<T>::value_type);
}

Add 32.10 Waiting and notifying functions [atomics.waitnotify]

1 This	section	provides	a	mechanism	to	wait	for	the	value	of	an	atomic	object	to	change	more	efficiently	than	can	
be	 achieved	with	 polling.	Waiting	 functions	 in	 this	 facility	may	 block	 until	 they	 are	 unblocked	 by	 notifying	
functions,	according	to	each	function’s	effects.	[Note:	Programs	are	not	guaranteed	to	observe	transient	atomic	
values,	an	issue	known	as	the	A-B-A	problem,	resulting	in	continued	blocking	if	a	condition	is	only	temporarily	
met.	–	End	Note.]	

2 The	 functions	 atomic_wait	 and	 atomic_wait_explicit	 are	 waiting	 functions.	 The	 functions	
atomic_notify_one	and	atomic_notify_all	are	notifying	functions.	

template <class T>
 void atomic_notify_one(const volatile atomic<T>* object);
template <class T>
 void atomic_notify_one(const atomic<T>* object);

3 Effects:	unblocks	up	to	one	thread	that	blocked	after	observing	the	result	of	an	atomic	operation	X,	 if	 there	
exists	another	atomic	operation	Y,	such	that	X	precedes	Y	in	the	modification	order	of	*object,	and	Y	happens-
before	this	call.	

template <class T>
 void atomic_notify_all(const volatile atomic<T>* object);
template <class T>
 void atomic_notify_all(const atomic<T>* object);

4 Effects:	unblocks	each	thread	that	blocked	after	observing	the	result	of	an	atomic	operation	X,	if	there	exists	
another	atomic	operation	Y,	such	that	X	precedes	Y	 in	 the	modification	order	of	*object,	and	Y	happens-
before	this	call.	

template <class T>
 void atomic_wait_explicit(const volatile atomic<T>* object,
 typename atomic<T>::value_type old,
 memory_order order);
template <class T>
 void atomic_wait_explicit(const atomic<T>* object,
 typename atomic<T>::value_type old,
 memory_order order);

5 Requires:	The	order	argument	shall	not	be	memory_order_release	nor	memory_order_acq_rel.	
6 Effects:	Repeatedly	performs	the	following	steps,	in	order:		

1. Evaluates	object->load(order)	!=	old	then,	if	the	result	is	true,	returns.	
2. Blocks	until	an	implementation-defined	condition	has	been	met.	[Note:	consequently,	it	may	unblock	for	

reasons	other	than	a	call	to	a	notifying	function.	-	end	note]	

template <class T>
 void atomic_wait(const volatile atomic<T>* object,
 typename atomic<T>::value_type old);
template <class T>
 void atomic_wait(const atomic<T>* object,
 typename atomic<T>::value_type old);

7 Effects:	Equivalent	to:		

 atomic_wait_explicit(object, old, memory_order_seq_cst);	

Modify 33.1 General [thread.general]
	 Table	140	–	Thread	support	library	summary	

Subclause		 Header(s)	

33.2	Requirements		 	

33.3	Threads		 <thread>

33.4	Mutual	exclusion		 <mutex> <shared_mutex>

33.5	Condition	variables		 <condition_variable>

33.6	Futures		 <future>

33.7	Semaphores		 <semaphore>

Modify 33.5 Condition variables [thread.condition]

1 Condition	 variables	 provide	 synchronization	 primitives	 used	 to	 block	 a	 thread	 until	 notified	 by	 some	 other	
thread	that	some	condition	is	met	or	until	a	system	time	is	reached.	Class	condition_variable	provides	a	
condition	 variable	 that	 can	 only	 wait	 on	 an	 object	 of	 type	 unique_lock<mutex>,	 allowing	 maximum	
efficiency	on	some	platforms.	Class	condition_variable_any	provides	a	general	condition	variable	that	
can	 wait	 on	 objects	 of	 user-supplied	 lock	 types.	 Class	 condition_variable_atomic	 provides	 a	
specialized	condition	variable	that	evaluates	predicates	over	a	single	object	of	class	atomic<T>,	without	using	
a	lock.	

2 Condition	variables	permit	concurrent	invocation	of	the	wait,	wait_for,	wait_until,	notify_one	and	
notify_all	member	functions.	 	

3 The	execution	of	notify_one	and	notify_all	shall	be	atomic.	The	execution	of	wait,	wait_for,	and	
wait_until	shall	be	performed	in	up	to	three	atomic	parts:	

1.	the	release	of	the	any	user-supplied	lock	mutex,	or	the	evaluation	of	a	predicate	over	an	object	of	class	
atomic<T>,	and	entry	into	the	waiting	state;	

2.	the	unblocking	of	the	wait;	and	
3.	the	reacquisition	of	the	any	user-supplied	lock.	

Modify 33.5.1 Header <condition_variable> synopsis [condition_variable.syn]
namespace std {
 class condition_variable;
 class condition_variable_any;
 class condition_vatiable_atomic;
 void notify_all_at_thread_exit(condition_variable& cond,
 unique_lock<mutex> lk);
 enum class cv_status { no_timeout, timeout };
}

Add 33.5.5 Class condition_variable_atomic [thread.condition.condvaratomic]
1 Class	condition_variable_atomic	 is	used	with	an	object	of	class	atomic<T>,	without	 the	need	to	

hold	a	lock.	It	is	unspecified	whether	operations	on	class	condition_variable_atomic	are	lock-free.	
2 The	member	 functions	wait,	wait_for,	and	wait_until	are	waiting	 functions.	The	member	 functions	

notify_one	and	notify_all	are	notifying	functions.	

namespace std {
 class condition_variable_atomic {
 public:

 condition_variable_atomic();
 ~condition_variable_atomic();

 condition_variable_atomic(const condition_variable_atomic&) = delete;
 condition_variable_atomic& operator=(const condition_variable_atomic&) = delete;

 template <class T>
 void notify_one(const atomic<T>&) noexcept;
 template <class T>
 void notify_one(const volatile atomic<T>&) noexcept;
 template <class T>
 void notify_all(const atomic<T>&) noexcept;
 template <class T>
 void notify_all(const volatile atomic<T>&) noexcept;
 template <class T>
 void wait(const volatile atomic<T>&, typename atomic<T>::value_type,
 memory_order = memory_order_seq_cst);

 template <class T>
 void wait(const atomic<T>&, typename atomic<T>::value_type,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate>
 void wait(const volatile atomic<T>&, Predicate pred,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate>
 void wait(const atomic<T>&, Predicate pred,
 memory_order = memory_order_seq_cst);
 template <class T, class Clock, class Duration>
 bool wait_until(const volatile atomic<T>&, typename atomic<T>::value_type,
 chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Clock, class Duration>
 bool wait_until(const atomic<T>&, typename atomic<T>::value_type,
 chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate, class Clock, class Duration>
 bool wait_until(const volatile atomic<T>&, Predicate pred,
 chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate, class Clock, class Duration>
 bool wait_until(const atomic<T>&, Predicate pred,
 chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Rep, class Period>
 bool wait_for(const volatile atomic<T>&, typename atomic<T>::value_type,
 chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Rep, class Period>
 bool wait_for(const atomic<T>&, typename atomic<T>::value_type,
 chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate, class Rep, class Period>
 bool wait_for(const volatile atomic<T>&, Predicate pred,
 chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst);
 template <class T, class Predicate, class Rep, class Period>
 bool wait_for(const atomic<T>&, Predicate pred,
 chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst);
 };
}

condition_variable_atomic();

1 Effects:	Constructs an object of type condition_variable_atomic.
2 Throws:	system_error when an exception is required (33.2.2).
3 Error	conditions:		

— resource_unavailable_try_again — if some non-memory resource limitation prevents
initialization.

~condition_variable_atomic();

4 Requires:	For	every	function	call	that	blocks	on	*this,	a	function	call	that	will	cause	it	to	unblock	and	return	
shall	happen	before	this	call.	 [Note:	This	 relaxes	 the	usual	 rules,	which	would	have	required	all	wait	calls	 to	
happen	before	destruction.	—	end	note] 	

5 Effects:	Destroys	the	object.	

void notify_one(const volatile atomic<T>& object) noexcept;
void notify_one(const atomic<T>& object) noexcept;

6 Effects:	If any threads are blocked on *this and object, unblocks one of those threads.

void notify_all(const volatile atomic<T>& object) noexcept;
void notify_all(const atomic<T>& object) noexcept;

7 Effects:	Unblocks all threads that are blocked on *this and object.

template <class T>
 void wait(const volatile atomic<T>& object, typename atomic<T>::value_type old,
 memory_order order = memory_order_seq_cst);
template <class T>
 void wait(const atomic<T>& object, typename atomic<T>::value_type old,
 memory_order order = memory_order_seq_cst);
template <class T, class Predicate>
 void wait(const volatile atomic<T>& object, Predicate pred,
 memory_order order = memory_order_seq_cst);
template <class T, class Predicate>
 void wait(const atomic<T>& object, Predicate pred,
 memory_order order = memory_order_seq_cst);
	

8 Effects:	Repeatedly	performs	the	following	steps,	in	order:	
a) For	 the	 overloads	 that	 take	 Predicate,	 evaluate	pred(object.load(order)),	 and	 for	 the	 other,	

evaluate	object.load(order) != old.	If	the	result	is	true,	returns.	
b) Blocks	 on	 *this	 and	 object	 until	 an	 implementation-defined	 condition	 has	 been	 met.	 [Note:	

consequently,	it	may	unblock	for	reasons	other	than	a	call	to	a	notifying	function.	-	end	note]		

template <class T, class Clock, class Duration>
 bool wait_until(const volatile atomic<T>& object,
 typename atomic<T>::value_type old,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Clock, class Duration>
 bool wait_until(const atomic<T>& object, typename atomic<T>::value_type old,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Predicate, class Clock, class Duration>
 bool wait_until(const volatile atomic<T>& object, Predicate pred,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Predicate, class Clock, class Duration>
 bool wait_until(const atomic<T>& object, Predicate pred,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Rep, class Period>
 bool wait_for(const volatile atomic<T>& object, typename atomic<T>::value_type old,
 chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Rep, class Period>
 bool wait_for(const atomic<T>& object, typename atomic<T>::value_type old,
 chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst);
template <class T, class Predicate, class Rep, class Period>
 bool wait_for(const volatile atomic<T>& object, Predicate pred,
 chrono::duration<Rep, Period> const& rel_time,

 memory_order order = memory_order_seq_cst);
template <class T, class Predicate, class Rep, class Period>
 bool wait_for(const atomic<T>& object, Predicate pred,
 chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst);

9 Effects:	Repeatedly	performs	the	following	steps,	in	order:	
a) For	 the	 overloads	 that	 take	 Predicate,	 evaluate	pred(object.load(order)),	 and	 for	 the	 other,	

evaluate	object.load(order) != old.	If	the	result	is	true,	or	with	low	probability	if	the	result	is	
false,	returns	the	result.		

b) Blocks	on	*this	and	object	until	the	timeout	expires	or	an	implementation-defined	condition	has	been	
met.	If	the	timeout	expired,	returns	false.	[Note:	consequently,	it	may	unblock	for	reasons	other	than	a	
call	to	a	notifying	function.	-	end	note]	

10 Throws:	Timeout-related	exceptions	(33.2.4).	

Add 33.7 Semaphores [thread.semaphores]
1 Semaphores	are	 lightweight	 synchronization	primitives	 that	 control	 concurrent	access	 to	a	 shared	 resource.	

They	are	widely	used	to	implement	other	synchronization	primitives	and,	whenever	both	are	applicable,	may	
be	more	efficient	 than	condition	variables.	Class	counting_semaphore	models	a	non-negative	 resource	
count.	Class	binary_semaphore	has	only	two	states,	also	known	as	available	and	unavailable,	and	may	be	
even	more	efficient	than	class	counting_semaphore.	

2 For	purposes	of	determining	the	existence	of	a	data	race,	all	member	functions	of	binary_semaphore and
counting_semaphore	(other	than	construction	and	destruction)	behave	as	atomic	operations	on	*this.	

Add	33.7.1	Header	<semaphore>	synopsis		 	 	 [semaphore.syn]:	
namespace std {
 class binary_semaphore;
 class counting_semaphore;
}

Add 33.7.2 Class binary_semaphore [semaphore.binary]:
namespace std {
 class binary_semaphore {
 public:
 using count_type = implementation-defined; //	see	33.7.2.1
 static constexpr count_type max = 1;

 binary_semaphore(count_type = 0);
 ~binary_semaphore();

 binary_semaphore(const binary_semaphore&) = delete;
 binary_semaphore& operator=(const binary_semaphore&) = delete;

 void release();
 void acquire();
 bool try_acquire();
 template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const&);
 template <class Rep, class Period>
 bool try_acquire_for(chrono::duration<Rep, Period> const&);
 private:
 count_type counter; //	exposition	only
 };
}

using count_type = implementation-defined;

1 An	integral	type	able	to	represent	any	value	of	type	int	between	zero	and	max,	inclusive.	

static constexpr count_type max = 1;

2 The	maximum	value	that	the	semaphore	can	hold.	

constexpr binary_semaphore(count_type desired = 0);

3 Requires:	desired	is	not	negative,	and	no	greater	than	max.	
4 Effects:	Initializes	counter	with	the	value	desired.	

~binary_semaphore();

5 Requires:	For	every	function	call	that	blocks	on	counter,	a	function	call	that	will	cause	it	to	unblock	and	return	
shall	happen	before	this	call.	 [Note:	This	 relaxes	 the	usual	 rules,	which	would	have	required	all	wait	calls	 to	
happen	before	destruction.	—	end	note]	

6 Effects:	Destroys	the	object.	

void release();

7 Requires:	counter < max.		
8 Effects:	Atomically	increments	counter	by	1	then,	if	any	threads	are	blocked	on	counter,	unblocks	at	least	

one	among	them.	
9 Synchronization:	Synchronizes	with	invocations	of	try_acquire()	that	observe	the	result	of	the	effects.	

bool try_acquire();

10 Effects:	Atomically,	subtracts	1	from	counter	then,	if	the	result	is	positive	or	zero,	updates	counter	with	the	
result.	An	implementation	may	spuriously	fail	to	replace	the	value	if	there	are	contending	invocations	in	other	
threads.	

11 Returns:	true	if	the	value	was	replaced,	otherwise	false.	

void acquire();

12 Effects:	Repeatedly	performs	the	following	steps,	in	order:	
a) Evaluates	try_acquire()	then,		if	the	result	is	true,	returns.		
b) Blocks	until	counter >= 1.		

template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const& abs_time);

template <class Rep, class Period>
 bool try_wait_for(chrono::duration<Rep, Period> const& rel_time);

13 Effects:	Repeatedly	performs	the	following	steps,	in	order:	

a) Evaluates	try_acquire().	If	the	result	is	true,	returns	true.		
b) Blocks	until	the	timeout	expires	or	counter >= 1.	If	the	timeout	expired,	returns	false.	

11 Throws:	Timeout-related	exceptions	(33.2.4).	
	

Add 33.7.3 Class counting_semaphore [semaphore.counting]:
namespace std {
 class counting_semaphore {
 public:
 using count_type = implementation-defined;	//	see	33.7.3.1
 static constexpr count_type max = implementation-defined; //	see	33.7.3.2

 counting_semaphore(count_type = 0);
 ~counting_semaphore();

 counting_semaphore(const counting_semaphore&) = delete;
 counting_semaphore& operator=(const counting_semaphore&) = delete;

 void release(count_type = 1);
 void acquire();
 bool try_acquire();
 template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const&);
 template <class Rep, class Period>
 bool try_acquire_for(chrono::duration<Rep, Period> const&);
 private:
 count_type counter; //	exposition	only
 };
}

using count_type = implementation-defined;

14 An	integral	type	able	to	represent	any	value	of	type	int	between	zero	and	max,	inclusive.	

static constexpr count_type max = implementation-defined;

15 The	maximum	value	 that	 the	 semaphore	 can	hold.	 [Note:	max	 should	be	at	 least	as	 large	as	 the	maximum	
number	of	threads	the	implementation	can	support.	-	end	note]	

constexpr counting_semaphore(count_type desired = 0);

16 Requires:	desired	is	not	negative,	and	no	greater	than	max.	
17 Effects:	Initializes	counter	with	the	value	desired.	

~counting_semaphore();

18 Requires:	For	every	function	call	that	blocks	on	*this,	a	function	call	that	will	cause	it	to	unblock	and	return	
shall	happen	before	this	call.	 [Note:	This	 relaxes	 the	usual	 rules,	which	would	have	required	all	wait	calls	 to	
happen	before	destruction.	—	end	note]	

19 Effects:	Destroys	the	object.	

void release(count_type update = 1);

20 Requires:	update > 0,	and	counter + update <= max.		
21 Effects:	Atomically	increments	the	counter	by	update.	If	any	threads	are	blocked	on	counter,	unblocks	at	

least	update	among	them.	
22 Synchronization:	Synchronizes	with	invocations	of	try_acquire()	that	observe	the	result	of	the	effects.	

bool try_acquire();

23 Effects:	Atomically,	decrements	counter	by	1	then,	if	the	result	is	positive	or	zero,	updates	counter	with	
the	result.	An	implementation	may	spuriously	fail	to	replace	the	value	if	there	are	contending	invocations	in	
other	threads.	

24 Returns:	true	if	the	value	was	replaced,	otherwise	false.	

void acquire();

25 Effects:	Repeatedly	performs	the	following	steps,	in	order:	
c) Evaluates	try_acquire().	If	the	result	is	true,	returns.		
d) Blocks	until	counter >= 1.		

template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const& abs_time);

template <class Rep, class Period>
 bool try_wait_for(chrono::duration<Rep, Period> const& rel_time);

26 Effects:	Repeatedly	performs	the	following	steps,	in	order:	
c) Evaluates	try_acquire().	If	the	result	is	true,	returns	true.		
d) Blocks	until	the	timeout	expires	or	counter >= 1.	If	the	timeout	expired,	returns	false.	

27 Throws:	Timeout-related	exceptions	(33.2.4).	

