Transformation Trait uncvref

Document #: WG21 PO550R0

Date: 2017-02-01

Project: JTC1.22.32 Programming Language C++

Audience: LEWG = LWG

Reply to: Walter E. Brown <webrown.cpp@gmail .com>
Contents
1 Introduction 1 5 Acknowledgments. 3
2 Discussion 2 6 Bibliography 4
3 Naming 2 7 Document history 4
4 Proposed wording 3

Abstract

This paper proposes uncvref, a new TransformationTrait for the <type_traits> header. Like
decay, uncvref removes any cv and reference qualifiers, but unlike decay, it does not mimic
any array-to-pointer or function-to-pointer conversion.

I love criticism just so long as it’s unqualified praise.
— NOEL COWARD

I'm unqualified for anything else. I'm barely qualified for this.
— CATHERINE KEENER

Knowledge unqualified is knowledge simply of something learned.
— PLATO

1 Introduction

The decay trait! sees significant use in the Standard Library, as it plays an important role in the
specification of several Library components. Alas, a number of these uses are more elaborate than
is strictly necessary. In particular, decay is used in several places where it would suffice simply
to strip cv and reference qualifiers, with no need for the decaying conversions (array-to-pointer
and function-to-pointer) that gave rise to decay’s name.

To address this situation, this paper proposes uncvre£, a new TransformationTrait? for the
<type_traits> header. Like the decay trait, uncvref removes any cv and reference qualifiers;
unlike decay, it does not mimic any array-to-pointer® or function-to-pointer* conversion. The
next section will provide several examples in which this proposed trait would serve as a more
accurate and slightly cheaper alternative to the current use of decay.

Copyright © 2017 by Walter E. Brown. All rights reserved.
ISee [N4618], [meta.trans.other].
2See [N4618], [meta.rqmts]/3.
3See [N4618], [conv.array].
4See [N4618], [conv.func].

mailto:webrown.cpp@gmail.com

2 PO550R0: Transformation Trait uncvref

2 Discussion

To a first approximation, the full decay treatment seems typically needed when forwarding
arguments. In contrast, merely comparing types seems typically to require only uncvref. In the
absence of the latter (proposed) trait, decay has frequently served as a convenient substitute for
it. Here are several examples (from [N4618]) of such overly enthusiastic use of decay:

e The following excerpt occurs twice in [tuple.apply]:®
make_index_sequence<tuple_size_v<decay_ t<Tuple>>>{});

In this context, the decay_t metafunction call is unrelated to any possible array or function
type. Instead, it is only the unqualified Tuple type that is wanted, so a call to the proposed
uncvref would suffice:®

make_index_sequence<tuple_size_v<uncvref_ t<Tuple>>>{});

e As a more interesting example, consider [optional.ctor]/16, where we find the metafunction
call:

is_same_v<optional<T>, decay_ t<U>>

As before, there is no role here for any decay conversion; only cv and reference qualifiers
need be removed from type U. This therefore seems a perfect candidate for the proposed
uncvref trait, leading to:

is_same_v<optional<T>,uncvref_ t<U>>

instead. (A similar example is found in [variant.ctor]/16.)

e Finally, in [func.require], we find several conditions asking about the relationship of
decay_t<decltype (t1)> to other types (e.g., to reference_wrapper). Applying uncvref
instead of decay would suffice for these, too.”

In all, the Library clauses directly apply decay_t circa forty times; we recommend that each
be audited along the lines we have begun above. If the present proposal is accepted, we are
prepared to undertake these audits and report their result, with recommendations, in a future
paper. (Clause 30 also uses the macro-like DECAY. COPY almost twenty additional times; these,
too, should be similarly audited, although Lavavej opines® “that every use of DECAY COPY is
necessary.”)

Finally, we note that several vendors have already implemented the proposed trait, under
various private names. The next section will discuss the proposed trait’s name.

3 Naming
From a number of private conversations regarding the proposed new trait’s name, the following

candidates have emerged:

e remove_const_volatile_ reference: There was widespread agreement that this is the
most descriptive name. If it were shorter, it would be the obvious choice, but no one wanted
this much to type.

5[N4618] actually contains a third instance of just such an excerpt, but the Example (in [intseq.make]) of which it
was a part has been editorially removed since [N4618] was published.

SEven that much is technically unnecessary; since tuple_size is defined for cv-qualified types, it would here suffice
to remove reference qualification, leaving any cv-qualification.

7Similarly, applying uncvref instead of decay would suffice in the [futures.task.members]/3 specification that cur-
rently reads “. .. if decay_t<F> is the same type as packaged_task<R (ArgTypes...)>.”

8Stephan T. Lavavej: “Re: remove_cv_ref.” Personal correspondence, 2017-01-05.

PO5

50R0: Transformation Trait uncvref 3

remove_cv_reference: Even this was seen as too long a name.

remove_ cv_ref: This seemed acceptable to all parties, but rather grudgingly so. No
one wanted to lobby for it very strongly. One individual did rate the variant spelling
remove_cvref as slightly more preferable for reasons of consistency with existing remove_*
traits.

strip: This name is in private use for the trait; it had been chosen by that implementer
because the trait “strips qualifiers” from the given type. The name was generally seen as
acceptable, but without significant enthusiasm due mostly to a lack of specificity.

uncvref: Not only is this name in private use for the trait, a capitalized version (UNCVREF) is
in use within the Ranges TS [N4620], as well. All consulted parties considered it sufficiently
clear and acceptably short. For all these reasons, this seemed the best compromise name,
and so we propose it here.

4 Proposed wording®

4.

4.

1 Insert into [meta.type.synop] (20.10.2) as shown:

namespace std {

template <size_t Len, class... Types> struct aligned_union;
template <class T> struct uncvref;
template <class T> struct decay;

template <size_t Len, class... Types>

using aligned _union_t = typename aligned union<Len, Types...>::type;
template <class T>

using uncvref_ t = typename uncvref<T>::type;
template <class T>

using decay_t = typename decay<T>::type;

2 Between the rows specifying aligned_union and decay, insert the following new row

into Table 50 — Other transformations:

template <class T> | The member typedef type shall name the same type as
struct uncvref; remove_cv_t<remove_reference_t<T>>.

5 Acknowledgments

Many thanks for their thoughtful comments to Andrey Semashev and the other readers of
pre-publication drafts of this paper.

9All proposed additions (there are no deletiens) are relative to the post-Issaquah Working Draft [N4618]. Editorial
notes are displayed against a gray background.

4

PO550R0: Transformation Trait uncvref

6 Bibliography

[N4618]

[N4620]

Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4618 (post-Issaquah mailing), 2016-11-28. http://www.open-std.org/
jtc1l/sc22/wg21/docs/papers/2016/n4618.pdf.

Eric Niebler and Casey Carter: “Working Draft, C++ Extensions for Ranges.” ISO/IEC JTC1/
SC22/WG21 document N4620 (post-Issaquah mailing), 2016-11-27. http://www.open-std.org/
jtcl/sc22/wg21/docs/papers/2016/n4620.pdf.

7 Document history

Version Date Changes

0]

2017-02-01 e Published as PO550R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4620.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4620.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Naming
	4 Proposed wording
	5 Acknowledgments
	6 Bibliography
	7 Document history

