
Document number: P0563R0
Date: 2017-02-05
Audience: Library Evolution Working Group
Reply to: Alan Talbot
 cpp@alantalbot.com

Vector Front Operations

Once upon a time, a long, long time ago, the wise men and women who created the Standard
Template Library sought to save us, the working programmers of the world, from the dreaded
fate of inefficiency. They did this by holding back certain incantations that were thought so
dangerous that no one but an elder wizard should even consider using them. But the world has
changed, and now young people everywhere have years of wizard training, so perhaps it is time
to reveal these dark spells. I refer of course to push_front and pop_front for vector.

Pushing onto the front of a vector was once expensive. It’s O(n)—how could this ever be good?
Well, computers have changed—a lot. With modern architectures, locality of reference is far
more important than big-O complexity when the container size is small (i.e. fits in cache). Today,
sliding a relatively small amount of memory around is very fast, while allocating memory on the
heap is very slow. And accessing data that is scattered around the heap is much, much slower
than accessing data that is contiguous. For small vectors, the O(n) operations that were once slow
are actually much faster than using a more complicated container. (Note: this argument works in
reverse with forward_list, for which O(n) back operations are especially expensive in cached
environments.)

For large vectors the O(n) property still dominates, but I find that a very common use case is to
create small lists and use them in high frequency and/or high volume applications. To simulate
this, I did a simple test on a modest workstation machine (3.5 GHz, 4 cores, 8 logical processors)
using one of the leading compilers and operating systems. To create a somewhat realistic
scenario, I put a fairly large number of small objects in a map (a table pattern that I use often).
Each object contained a small list of integers which I inserted one at a time at the front of the list.
I then removed them, again one at a time from the front. I ran tests implementing the list with a
standard list, deque and vector. In the vector case I reserved the correct size in advance. I tried
two different size scenarios: 10M objects with 10 ints, and 1M objects with 100 ints.

 Container Time (s) Memory (GB)

10M/10

List 8.1 4.34

Deque 3.7 3.05

Vector 2.7 1.29

1M/100

List 6.4 3.33

Deque 1.7 1.21

Vector 2.6 0.50

The times listed are the time spent adding and removing the ints, as timed by the operating system’s microsecond-
precision interval timer. The time spent building and destroying the map holding the objects was not included. The
memory measured was the peak usage—the working set after loading the ints.

P0563R0

2

In the 10 element case, the vector beat the deque handily in speed and used less than half the
memory. In the 100 element case, while the deque beat the vector in speed, the vector again
used less than half the memory. Unsurprisingly, the list was far behind in both measurements.

The vector container is meant to be the go-to container for most situations, so it should not be a
second class citizen. The feature sets of the sequence containers should be consistent—this is
especially important in generic contexts—and the choice of container ought to be driven by the
requirements of the situation, not the convenience of the API. I therefore propose adding
push_front, pop_front, and emplace_front to vector, making it consistent with list and deque,
and more supportive of modern computers.

Proposed Wording

23.2.3 Sequence containers [sequence.reqmts]

¶15 Table 88

emplace_front, container column:

deque, forward_list, list, vector

push_front (both t and rv versions), container column:

deque, forward_list, list, vector

pop_front, container column:

deque, forward_list, list, vector

23.3.11.1 Class template vector overview [vector.overview]

¶2 // 23.3.11.5, modifiers, add:

template <class... Args> reference emplace_front(Args&&... args);

void push_front(const T& x);

void push_front(T&& x);

void pop_front();

23.3.11.5 vector modifiers [vector.modifiers]

Add before ¶1:

template <class... Args> reference emplace_front(Args&&... args);

void push_front(const T& x);

void push_front(T&& x);

Add before ¶3:

void pop_front();

23.3.12 Class vector<bool> [vector.bool]

¶1 // modifiers, add:

template <class... Args> reference emplace_front(Args&&... args);

void push_front(const bool& x);

void pop_front();

23.6.4.1 queue definition [queue.defn]

¶1

Any sequence container supporting operations front(), back(), push_back() and

pop_front() can be used to instantiate queue. In particular, vector (23.3.11), list

(23.3.10) and deque (23.3.8) can be used.

