
visit<R>: Explicit Return Type for visit

Document #: P0655R0
Date: 2017-10-14
Project: Programming Language C++

Library Evolution Group
Reply-to: Michael Park

<mcypark@gmail.com>
Agustín Bergé
<agustinberge@gmail.com>

1 Introduction

This paper proposes to allow visiting variants with an explicitly specified return type.

2 Motivation and Scope

Variant visitation requires invocation of all combinations of alternatives to result in the same type,
such type is deduced as the visitation return type. It is sometimes desirable to explicitly specify a
return type to which all the invocations are implicitly convertible to, as if by INVOKE <R> rather
than INVOKE :
struct process {

template <typename I>
auto operator()(I i) -> O<I> { /* ... */ };

};

std::variant<I1, I2> input = /* ... */;

// mapping from a `variant` of inputs to a `variant` of results:
auto output = std::visit<std::variant<O<I1>, O<I2>>>(process{}, input);

// coercing different results to a common type:
auto result = std::visit<std::common_type_t<O<I1>, O<I2>>>(process{}, input);

// visiting a `variant` for the side-effects, discarding results:
std::visit<void>(process{}, input);

In all of the above cases the return type deduction would have failed, as each invocation yields a
different type for each alternative.

1

mailto:mcypark@gmail.com
mailto:agustinberge@gmail.com

3 Impact on the Standard

This proposal is a pure library extension.

4 Proposed Wording

Modify §23.7.2 [variant.syn] of N4687 [1] as indicated:
// 23.7.7, visitation
template <class Visitor, class... Variants>

constexpr see below visit(Visitor&&, Variants&&...);
+ template <class R, class Visitor, class... Variants>
+ constexpr R visit(Visitor&&, Variants&&...);

Add new paragraphs to §23.7.7 [variant.visit] of N4687 [1]:

template <class R, class Visitor, class... Variants>
constexpr R visit(Visitor&& vis, Variants&&... vars);

Requires: The expression in the Effects: element shall be a valid expression for
all combinations of alternative types of all variants. Otherwise, the program
is ill-formed.

Effects: Let is... be vars.index().... Returns INVOKE <R>(forward<Visitor>(vis),
get<is>(forward<Variants>(vars))...);.

Throws: bad_variant_access if any variant in vars is valueless_by_exception().

Complexity: For sizeof...(Variants) <= 1, the invocation of the callable
object is implemented in constant time, i.e. it does not depend on
sizeof...(Types). For sizeof...(Variants) > 1, the invocation of the
callable object has no complexity requirements.

5 Design Decisions

There is a corner case for which the new overload could clash with the existing overload. A call to
std::visit<Result> actually performs overload resolution with the following two candidates:
template <class Visitor, class... Variants>
constexpr decltype(auto) visit(Visitor&&, Variants&&...);

template <class R, class Visitor, class... Variants>
constexpr R visit(Visitor&&, Variants&&...);

The template instantiation via std::visit<Result> replaces Visitor with Result for the first
overload, R with Result for the second, and we end up with the following:

2

template <class... Variants>
constexpr decltype(auto) visit(Result&&, Variants&&...);

template <class Visitor, class... Variants>
constexpr Result visit(Visitor&&, Variants&&...);

This results in an ambiguity if Result&& happens to be the same type as Visitor&&. For example,
a call to std::visit<Vis>(Vis{}); would be ambiguous since Result&& and Visitor&& are both
Vis&&.

In general, we would first need a self-returning visitor, then an invocation to std::visit with the
same type and value category specified for the return type and the visitor argument.

We claim that this problem is not worth solving considering the rarity of such a use case and the
complexity of a potential solution.

Finally, note that this is not a new problem since bind already uses the same pattern to support
bind<R>:

template <class F, class... BoundArgs>
unspecified bind(F&&, BoundArgs&&...);

template <class R, class F, class... BoundArgs>
unspecified bind(F&&, BoundArgs&&...);

6 Implementation Experience

• MPark.Variant implements visit<R> as proposed in the visit-r branch.
• Eggs.Variant has provided an implementation of visit<R> as apply<R> since 2014, and also

handles the corner case mentioned in Design Decisions.

7 Future Work

There are other similar facilities that currently use INVOKE, and do not provide an accompanying
overload that uses INVOKE <R>. Some examples are std::invoke, std::apply, and std::async.

There may be room for a paper with clear guidelines as to if/when such facilities should have an
accompanying overload.

References

[1] 2017. Working Draft, Standard for Programming Language C++. N4687. Retrieved from
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4687.pdf

3

https://github.com/mpark/variant
https://github.com/mpark/variant/tree/visit-r
https://github.com/eggs-cpp/variant
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4687.pdf

	Introduction
	Motivation and Scope
	Impact on the Standard
	Proposed Wording
	Design Decisions
	Implementation Experience
	Future Work
	References

