
P0689R0 2017-06-19 Reply-To: gdr@microsoft.com

1

A Word About Modules

Gabriel Dos Reis

Microsoft

The C++ community has rightfully embraced “C++ Modules” as a language functionality to help the

working programmer express software architecture boundaries, dependencies more formally. These

structures take the celebrated One Definition Rule as foundational, as opposed to a property that needs

to be re-discovered and to be checked over and over. Because of that, modules hold the promise of also

improving compile-time, a critical productivity issue for modern C++. To get there, we need to take code

hygiene seriously. To make a dent, a good module system for C++ cannot just be an embodiment of what

is expedient in the moment.

At the Fall 2015 meeting in Kona, Hawai’i, the C++ Evolution Working Group took the necessary and

courageous step of sending a design of modules for C++ to the C++ Core Working Group for review as

basis for a Module Technical Specification. That design has no provision for exporting or importing macros

across module boundaries. Note that, as ever, you can still use macros in any translation unit even if they

are part of a module, as usual. It is a bold move to address fundamental problems at the core of software

engineering with C++ and productivity tools support. A Technical Specification is designed as a vehicle to

conduct bold experiments before we enshrine a feature into the standards text. For that to work, the TS

needs to exist to serve as a basis of shared, common understanding for compilers, tool builders, and C++

users to experiment with. If the C++ committee is to consider modules for C++20, now is the time to act,

now is the time to send the Modules TS draft for PDTS so we can learn what works in practice, what needs

improvement, and from the experiments what would be effective ways to migrate from where we are

today to where we would like to be in a world of C++ with modules. Further delays will harm the C++

community we serve.

 To this date, there are ongoing implementations of the Module TS draft in at least three widely used C++

compilers. I am encouraged by the passion of the C++ community, the dedication of C++ compiler

implementers, and the energy and feedback I get from the C++ community. We are facing a historic

opportunity to fundamentally shape what it is to build software systems at scale with C++. But we are

running out of time. We need to act. And learn from the experiment, to inform our decisions for the next

steps. An experiment that is not just like how we have been writing systems the last four decades or so.

These are exciting time for C++ developers. Let’s seize the opportunity to change how we write C++.

