
Document Number: P0791R0 

Date:   2017-10-10 

Reply To:  Jakob Riedle (jakob.riedle@tum.de) 

Audience:  EWG 

 
Concepts are Adjectives, not Nouns 
 

Introduction 
This Paper aims to partially refine the big picture of Concepts in C++ – not to give concise articulation of 

surely necessary specification details. The author hopes to give a more intuitive understanding of 

Concepts and hence more powerful support of Constraint-based Programming in C++. 

Starting point for the following syntactical deliberations is [1] (“N4687: Working Draft, Standard for 

Programming Language C++”). 

Status Quo 
Given the following Code Snippet that facilitates Concepts as described by [1], 

template<Red X> 

void foo(); 

how do we know, Red is a concept? Or does Red refer to a plain type and X is a value? This gets even 

worse considering the idea of (previously proposed) Non-Type Concepts – constraints on values. 

Red may then eventually be defined like this: 

template<int N> 

concept Red = requires{ /*...*/ }; 

… which would leave us with even more ambiguity in the previous example, namely that X might be a 

value of type int. This visual indifference does not sufficiently express the very difference between what 

needs to be passed to those templates. Consider the following declaration: 

template<Dimension D> 

class 2D_Field; 

We can deduce that 2D_Field is a class representing a two-dimensional Field with Values of unknown 

type, presumably double or int. Since Concepts as currently proposed allow D to resolve to both a type 

and a value, we don’t know how to use it. Are we supposed to pass a type like int[48][48] or just the 

length of one side (48) and assume a square field? One might argue that we already have similar visual 

indifferences (forwarding reference vs. rvalue reference, variable definition vs. function declaration (Most 

Vexing Parse)) and more or less have happily grown accustomed to them. However, the abovementioned 

visual indifference this time impacts the core of the language. 

The possibility to declare a Type name in syntactically identical way as a normal variable without any hint 

suggesting a type declaration besides hopefully descriptive names (!) represents an unprecedented 

inconsistency within C++. The ability to do so weakens an essential pillar upon which we read and 

understand data flow and data structures. This leads for example to the following situation: Given a 

Template, we cannot up front determine whether identifiers used within refer to type names or values, 

that are declared by the template they are used in! 

Furthermore, if the name of a Concept used in the declaration of a template is accidentally shadowed by a 

concrete type, the compiler will try to at least syntactically understand the templates contents. Since the 

former Type Template Parameters using the respective concept are now of concrete type and thus values, 

the error messages generated within the template will be very cryptic. We have subsequently achieved 



the exact opposite of what Concepts try to solve: We have silently weakened fundamental preconditions 

of a template: Namely that specific identifiers it uses shall resolve to types and specific identifiers shall 

resolve to values. Given that this can happen vice versa (A concept declaration shadows a concrete type 

used by the template declaration), we have even weakened the preconditions of templates that do not 

facilitate Concepts. Even though the kind of preconditions being weakened is different than what is aimed 

for by Concepts (preconditions on the templates implementation context vs. the templates use), the 

argument is still applicable. 

Solution 
The problem in the opinion of the Author lies in the fact, that Concepts are (ontologically speaking) 

wrongly perceived as a constrained type instead of a constraint applicable to a types domain. 

Note: typename is the context of abstract ideas understood as an datatype whose domain is the set of all 

hypothetical datatypes. 

To examine this more closely, let’s consider the following example: 

template<RandomAccessIterator T> 

void sort( T begin , T end ); 

template<typename T> 

   requires LessThanComparable<T> && CopyConstructible<T> 

T min( T&& a , T&& b ); 

Why is it not possible in the second case to frankly state, we want “a less-than-comparable and copy-

constructible Type T?” If you look at the phrasing of this question, you might notice that "less-than-

comparable" and "copy-constructible" are Adjectives, not Nouns. The Noun however in this question is 

“Type”. It becomes very clear now, why the Syntax currently proposed by N4687 [1] is so ambiguous: 

Named concepts are falsely perceived as Nouns instead of Adjectives. Let’s see how this can give us a 

clue on how we can help Concepts to be more descriptive and less ambiguous. 

Type Concepts 
There is no such thing as a CopyConstructible or Regular but there surely are CopyConstructible and 

Regular Types. Leaving out the Noun “Type” in the statement CopyConstructible T translates to 

English as 

Naming it T, let there be a copy-constructible! 

And everyone would strongly feel the need to ask, “A copy-constructible what ?” 

Just because we gave it a name doesn’t mean we have said, what it is. 

Since the keyword typename is the only indication that we declare a type, we should re-add this keyword 

in a fashion we would naturally do in spoken language – T is still a typename after all. 

This would result in the following expression: 

CopyConstructible typename T 

Since we naturally wouldn’t hesitate to prepend any number of adjectives to nouns in spoken language, 

we find no problem anymore in using any number of Constraints exactly where we would naturally expect 

them to be: 

template<CopyConstructible LessThanComparable typename T> 

T min( const T& a , const T& b ); 

This really does turn out surprisingly intuitive. The conjunction of Concepts suddenly feels natural, 

because we don’t try to “interleave two constrained types” but rather apply two criteria to a domain of 

types. 

But wait, one might reply: “How about the Iterator or Container-Concepts, they are nouns.” And while 

that is true, we at the same time don’t expect a Container to be passed to our templates (as is suggested 



by current Syntax template<Container C>) but rather a Container-Type. So even in this case it makes 

perfect sense to insert the keyword typename after a Concepts name. How about Non-Type Concepts? 

Note: Suggesting a syntax for the conjunction of concepts, at their use does not imply removing the proposed 

requires-clause. 

Application to Non-Type Concepts a.k.a “Value Concepts” 
Note: It is assumed here, that there is need for named Non-Type Constraints, which is the reason this area is being 

explored here. 

Note: In the following deliberations, we speak about the constraining of variables. Types are nonetheless thought to 

be constrainable outside the context of a variable declaration. However, for the sake of explainability, this paper will 

discuss these constraints w.l.o.g. at the declaration of a variable. 

As Non-Type Concepts have been dropped in [1], we will approach them from the perspective of 

Concepts TS [4]. Given may be the following Value Concept definition: 

template<int N> 

concept bool Even = N%2 == 0; 

We will not discuss the above syntax at this point but rather assume it as temporary starting point for the 

following considerations. 

Along the design rules explored in the last paragraphs, one might try to write a variable of constrained 

type (e.g. copy-constructible type) as 

CopyConstructible auto foo 

. With this idea in mind, let’s get back to the example of Even. 

We can ask ourselves, does the datatype int have anything to do with the property of being even? Yes 

and No. While a Number can be even in a mathematical sense, an Iterator cannot and in fact an Iterator is 

unlikely to have a modulo operator that we can facilitate in the above fashion. We ultimately need to 

constrain our Value Concept itself with a Type Concept. In the case of Even, we will call this Type Concept 

Numerical. Adapting the above syntax for the declaration of N, we can now write 

template<Numerical auto N> 

concept bool Even = N%2 == 0; 

 

When using this Value Concept along the Idea of treating Concepts as adjectives, there are four different 

aspects for which we need to clarify their semantics: 

1. We constrain the domain of a concrete datatype, e.g. int: This will most intuitively be written as 

Even int foo 

2. We want to constrain the values of a variable regardless of its type. Since a declaration of a 

variable of unconstrained type is done using auto, this would probably be done as 

Even auto foo 

However, Even is at this point only defined for a Numerical value. As one would automatically 

expect, this already implicitly constrains the datatype. 

3. We want to constrain the values of a constrained set of datatypes. If we just continue applying 

the pattern from the previous examples, this would look like the following (we will exemplarily 

use the Type Concept CopyConstructible):  

Even CopyConstructible auto foo 

The type of foo now has to fulfill the Type Concepts Numerical (implicitly because of Even) and 

CopyConstructible, its value must fulfill the Value Concept Even. 

4. We want to constrain the type of a variable of already concrete type: 



CopyConstructible int bar 

Since we already know, int fulfills the Type Concept CopyConstructible, the Concept is 

essentially useless. This situation however is likely to happen, especially in templated code and 

should therefore be allowed – of course, only as long as the concrete type does fulfill the 

prepended Concept. 

Note: In the above item “3”, both Type Concepts and Value Concepts are being prepended to the keyword auto. This 

ambiguates, which Adjectives constrain the Values and which constrain the Type of the variable. Whether this is an 

actual Problem at all and if yes, which syntax adjustments should be made to resolve this visual indifference is to be 

discussed by subsequent papers. 

Mixing Type Qualifiers and Concepts 
Let’s consider the following example:  

CopyConstructible const auto bar 

Should CopyConstructible be applied to the whole (even though const-qualified) datatype of bar (as 

is presumed in the previous paragraphs) or to the type that ‘auto’ would resolve to (the non-const-

qualified type)? Well, if we wanted to apply a Concept to only ‘auto’ and would follow the rules of natural 

speech, we’d rather write something like the following: 

const CopyConstructible auto bar 

This starts to make clear, that the idea of Concepts as predicates of a variable’s datatype/values is 

unnecessarily constrained. The author feels at this point that Concepts should rather follow the 

precedence rules already present at declaring datatypes (as the last scenario suggests). 

In order to get a bit into detail, let’s consider the case of reference qualification: 

CopyConstructible auto&& foo 

This would presumably translate to an rvalue reference to a value of arbitrary but CopyConstructible 

type. 

Constraining Pointers 
Now something a bit more complex: 

CopyConstructible auto* Even bar 

Using the precedence rules we already internalized in our minds, the above should translate to an Even 

(2-aligned) pointer, that points to a CopyConstructible variable. Similarly, 

CopyConstructible auto* const Even& bar 

Should translate to a const lvalue reference to an Even (2-aligned) pointer, which points to an object of 

arbitrary but CopyConstructible Type. 

 

Note: Whether a pointer is applicable to the concept Even solely depends on the definition of Even and eventually, 

whether a pointer fulfills the hypothetical Concept Numerical. 

The reader should at this point keep in mind, that this paper doesn’t aim at making precedence rules 

explicit but rather to suggest making Concept more versatile by perceiving them as adjectives (similar to 

e.g. const) while following established ‘intuition’. 

Outcome 
In all aforementioned scenarios, the outcome has intuitive semantic implications, follows the design 

principles already present in C++ and is therefore easily understandable even by C++ beginners. 

The plausibility of this approach stems from the fact, that we are adjectivizing types and values in a 

syntactically identical fashion for a very long time now. The most clear-cut examples include the following: 



• The keyword unsigned is in some sense restricting a datatype to non-negative values. The fact, 

that unsigned and signed can be used without int, short, char shows how even here 

Adjectives and Nouns are ambiguated. 

• The keyword double designates a double-precision floating point type. Even here, the name 

does not suggest what is being doubled – once more the noun is being left out. 

• The keywords short and long designate a smaller resp. longer version of an int. Like 

unsigned, short and long can be used without the noun int. 

What about Terse Syntax? 
We are unlikely to apply the syntax form proposed by N4687 [1] to function or lambda parameters (as 

outlined by P0587R0 [2]1). Hence, the syntax for applying a concept is most likely to differ in the context 

of function and lambda parameters, in order to sufficiently provide for both brevity and descriptiveness, 

which should be present in the first place. 

The here proposed syntax however can be carried without modification not only into the declaration of 

lambda a well as (non-lambda) function parameters. This is, because the proposed approach resolves the 

visual indifference between a non-templated function and an implicitly templated function. The term 

“Terse Syntax” would become obsolete in this case: We would not be forced to make another visual 

differentiation between the use of concepts in template vs. function/lambda parameter declarations. 

Example 

Assuming the identifier NonEmpty is unknown to the programmer and may stand for either a concrete 

Type or a Type Concept, 

a) a non-templated function would be declared as 

void foo( NonEmpty obj ); 

resp. 

auto foo = []( NonEmpty obj ){ /*...*/ } 

b) while an implicitly templated function/lambda (because Concept-constrained) would be declared 

void foo( NonEmpty auto obj ); 

resp. 

auto foo = []( NonEmpty auto obj ){ /*...*/ } 

As should be clear by now, the proposed approach suggests a very intuitive view on concepts and is able 

to pave the way for a consistent, descriptive and intuitive usage of them across all their application 

contexts, which is not possible with the wording of Concepts in N4687 [1]. 

Q&A or “Variants” 

Is this gain in clarity and descriptiveness worth the additional writing work? 
We have examined in the first chapter, that the current Concepts proposal breaks with fundamental habits 

and additionally implies a visual indifference between constrained Type and Non-Type Parameters. 

Furthermore, the proposed syntax is hardly usable for terse syntax, as one cannot differentiate between 

an implicitly-templated function and a regular one. 

In case we constrain identifiers by exactly one Concept, the proposed syntax form requires 5 resp. 9 

additional letters for resolving all of the above issues. When applying more than one concepts to an 

identifier, the proposed syntax can spare the trailing requires-clause and is thus shorter (in case of a 

logical conjunction of them, which is the expected use case as discussed in the next paragraph). 

Apart from that, the keyword typename after a Concept’s name could be made optional inside a 

template<> statement – of course with the profound consequences outlined before. 

                                                 
1 This is mostly because the use of a Concept in a functions parameter list silently makes this function an 
implicit template which has profound impact on how to reference it. 



One may logically conjunct multiple Concepts by chaining them. Do you also propose 

Concept disjunctions? 
First of all, this paper does not propose to remove the trailing requires clause after a templates 

parameter list or a functions parameter list. Secondly, the disjunction of concepts can be expected to be 

used far less often than the conjunction of them. This is because Concepts represent preconditions in an 

abstract sense, which are to be met before a certain piece of software can be used. This abstract list of 

preconditions is naturally built of conjunctions for the most part. 

Other than that, there are three alternatives to an additional requires-clause with an explicit disjunction: 

1. We could allow Concepts to be passed as template parameters to other templates, which enables 

us to come up with a disjunction of Concepts: 

template<typename T, template<typename> concept... Cs> 

concept Or = ( Cs<T> && ... ); 

 

// Usage 

template<Or<Even,Odd> int N> 

void foo(); 

This implementation option is shorter and more descriptive in its purpose than a corresponding 

requires-clause. Possible meta concepts would include e.g. Not<>, Neither<>, XOr<> or 

IfThenElse<>. 

2. We could provide for a Concept-capable disjunction operator such as “|”: 

template<Even|Odd int N> 

void foo(); 

The precedence rules and semantics of this operator would still need to be made explicit though. 

3. Do nothing. Disjunctions of concepts in some cases prevent us from preserving a total ordering 

concepts. Therefore we might discourage writing them by not providing an alternative. 

Are there any other benefits of this approach? 
Concepts as (partial) manifestation of Contract-based Programming in C++ currently limit themselves to 

the compile time. Anticipating that there will be people raising their voice for the wish to write Value-

Concepts and furthermore apply already-written Value-Concepts to function parameters: 

The concept of Adjectives represents a powerful and intuitive tool at fully implementing Contract-based 

Programming in C++ consistently across compile-time and runtime. It can easily be extended to come up 

for e.g. runtime constraints (in the form of concept functions), which can avoid the multiple evaluation of a 

constraint by including the constraints into the type system (just like other adjectives such as volatile, 

const or constexpr do). Proposing this however is not goal of this paper. 

Note: [3] (P0380R1: A Contract Design) was kept in mind while writing the above comment. The author however 

considers the Adjective Syntax (as conceptual idea) to be vastly superior to the proposed attribute syntax. 

Formalization 
The syntactical resp. semantical revisions of Concepts can now be summarized as follows: 

1. Concepts can emerge in three kinds: 

a. Type-constraining. A type constraining Concept represents a property enforceable on the 

domain of variables of type “typename”. 

b. Value-constraining. A value constraining Concept represents a property enforceable on 

the domain of an arbitrary (but excluding “typename”) Datatype. 

c. Type- and Value-constraining. A Value- and Type-constraining Concept represents a 

property that is only defined (decidable) for Values of a certain class of Datatypes (which 

is itself constrained using a Type Concept). Therefore, a Type- and Value-constraining 

Concept – once applied to a Value Variable – constrains its set of values as well as its 

datatype. 



Note: The domain of a variable is for practical purposes understood as the set of values that may be 

assigned to this variable. 

Note: Pure value-constraining Concepts are expected to be rare, since only few and only very general 

properties can be associated with values of arbitrary datatype. 

2. Enforcing a Concept on the domain of a variable (type or value variable) happens by inserting the 

Concepts name into the variable’s datatype. More specifically: 

a. For Type Variables, this means to prepend its name to the typename keyword. 

b. Once inserted into a variable’s datatype, it should constrain the contextually closest part 

of the datatype (whatever that shall be, but with present precedence rules in mind). 

c. Type-constraining Concepts may be applied to Type Variables, as well as Value 

Variables. 

 In case of Type Variables, the applied Concept constraints the set of types that may be 

assigned to this variable. 

 In case of auto-typed Value Variables, the applied Concept constraints the datatype of 

values that may be assigned to them. However, the datatype of the initializing value still 

determines its datatype (for its whole lifespan). 

 In case of non-auto-typed Value Variables: Iff the Concept is fulfilled, the Variable 

declaration behaves as if written without the Concept applied. Otherwise, the declaration is 

ill-formed. 

d. Value-constraining Concepts may be applied to Value Variables. 

 Once applied to a Variable, the Concept constraints the set of values that may be assigned to 

it. The precedence rules shall be identical to the application of Type-Constraining Concepts. 

e. Value- and Type-constraining Concepts may be applied to Value Variables. 

 Once applied to a Variable, the Concept constraints the set of possible declared datatypes of 

this variable as well as the set of values that may be assigned to it. The precedence rules 

shall be identical to the application of Type-Constraining Concepts. 

 Again, in case of auto-typed value variables, the datatype of the initializing value still 

determines its final datatype – given it fulfills the Concept. 

Acknowledgements 
Thanks to Arthur O'Dwyer, who gave me very valuable feedback on the topic as well as this paper and 

who offered to shepherd this paper to Albuquerque. 

Thanks to Richard Smith, who coined the phrase “Concepts are Adjectives, not Nouns”. 

References 
[1] N4687: Working Draft, Standard for Programming Language C++ 

[2] P0587R0: Richard Smith, James Dennett: Concepts TS revisited 

[3] P0380R1: G. Dos Reis, a.o.: A Contract Design 

[4] N4549: Programming Languages — C++ Extensions for Concepts 


