Extensions for Disambiguation Tags

Document number: P0O801R0O

Date: 2017-10-12

Project: Programming Language C++

Audience: LWG, LEWG, SG7

Authors: Mingxin Wang

Reply-to: Mingxin Wang <wmx16835vv@163.com>

Table of Contents

Extensions fOr DiSAMDIGUATION TAGScvervirtiriiriietieieie ittt sttt ettt b ettt ebe et et e sb e b e sbeeb e et e e aeanbesbeebesbesbeebeeneaneennennas 1
1 INEFOGUCTION ...ttt bbbtk bbbt E R e R e bt e b e bt e b AR et E e b et e bt e bt e bt e b et e b e bt et n et 1
2 TeChNICAl SPECITICALIONviiiiiiiieiiee ettt bt bbbt h e e e b e bt e b e e bt Rt e b e e e et e nbesb e s b e ebeebe e e enbe e 1
KT U401 o] (I L Vo OO USROS UR USRS 2

1 Introduction

Currently, there are disambiguation tag templates defined in the standard, including “in_place_ type’,
“in_place_index’, etc. However, these components are not enough to carry every sort of metadata required by
function templates, such as enumerations, floating numbers or user-defined static data structures.

This paper proposes 2 disambiguation tag templates, which provide generic expressions to pass various sort of
metadata to function templates. | think this design is useful when recursively calling constexpr functions in
non-constexpr ones with custom input, and therefore would help standardize the technical specifications in compile-time
programming.

2 Technical Specification

namespace std {

template <class T, T V>
struct in_place arg t {
explicit in_place _arg t() = default;
}:
template <class T, T V>
inline constexpr in_place arg t<T, V> in_place _arg{};

template <class T, const T& V>

struct in_place resource_t {
explicit in_place _resource t() = default;
};
template <class T, const T& V>
inline constexpr in_place resource t<T, V> in_place resource{};

}

Users are allowed to pass constexpr values by “in_place_arg’, and pass static constexpr resources by
“in_place_resource’.
Additionally, 1 suggest that "in_place_index_t" should be an alias of "in_place_arg_t":

template <size_t I>
using in_place_index_t = in_place_arg_t<size_ t, 1>;

Comparing to "in_place_arg_t’, | think "integral_constant’ is inappropriately named, and there seem to
be little necessity to define any member types or constants in it, because these metadata is already passed by templates.

3 Sample Usage

With the support of "in_place_arg’, it becomes easy to pass any constexpr value (providing its type is valid for a
template non-type parameter) to a function template using a uniform disambiguation tag, especially with constructors.
Providing there is a enum class defined as follows:

enum class State {
RUNNINE, AVAILABLE, OFFLINE

}:
And there is a constexpr function that could convert a “State" to its string expression:

constexpr const char* make_state_str(State s) {
switch (s) {
case State::RUNNINE: return "Running State";
case State::AVAILABLE: return "Available State";
case State::OFFLINE: return "Offline State";
default: return "Unknown State™;

It is relatively easy to design a class with “in_place_arg’, which is explicitly constructible from a “constexpr State”
and stores its string expression without executing the constexpr function ‘make_state_str at runtime:

class Machine {

public:
template <State S>
explicit Machine(std::in_place_arg_t<State, S>) : state str_ (STATE_STR<S>) {}

const char* get_state str() { return state str_; }

private:

const char* state_str_;
template <State S>

static constexpr const char* STATE_STR = make_state_str(S);

};

Machine machine(std::in_place_arg<State, State::AVAILABLE>);
puts(machine.get_state str());

“in_place_resource’ has a wider scope of application than “in_place_arg" does, because it could carry all
sort of constexpr data if the data is prior declared.
For example, providing there is a struct carries some configuration:

struct Config {

double EPS = 1le-8;

int INF = OX7F7f7f7T;

long long INFL = OX7Ff7f7F7F7f7E7¥7FL;
} constexpr MATH_CONFIG;

It is allowed to initialize a type with the resource by templates with “in_place_resource’, even if we are not sure
about the concrete type of the resource:

class Calculator {
public:
template <class T, const T& CONFIG>
explicit Calculator(std::in_place_resource_t<T, CONFIG>);

¥

Calculator calculator(std::in_place_resource<Config, MATH_CONFIG>);

	Extensions for Disambiguation Tags
	1 Introduction
	2 Technical Specification
	3 Sample Usage

