
N. Josuttis: P0814R0: hash_combine() Again

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0814R0
Date: 2017-10-13
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LEWG, LWG
Prev. Version:

hash_combine()	Again	
C++11 came out with hash containers but poor support to implement hash functions.
A few proposals tried to fix that:

 In 2012, N3333 “Hashing User-Defined Types in C++1y”
 In 2014, N3976 “Convenience Functions to Combine Hash Values”

N3976 was more or less rejected with the promise that N333 will solve it better soon. But now, 3-5 years
later in C++17, we still don’t have support to help application programmers to use unordered containers
for their own types. Proving:
 The perfect is the enemy of the good

This paper proposed a minimal solution that still gives freedom to future standard to make it better.

The proposal is roughly taken from the following requirement, which both papers saw as a valid and
common request and were more or less proposing the same solution:

 Application programmers should have a convenience function to compute a combined hash value
from the hash values of types for which std::hash<> is supported.

Thus, for example, to use a class Customer in a hash container the programmer simply should be able to
program:

struct MyCustomerHash {
 std::size_t operator() (const Customer& c) const {
 return hash_combine(c.getFirstname(),
 c.getLastName(),
 c.getAge());
 }
};
std::unordered_set<Customer,CustomerHash> coll;

With fold expression, hash_combine() is easy to implement. For example:

template<typename T>
void _hash_combine (size_t& seed, const T& val)
{
 seed ^= std::hash<T>()(val) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

template<typename... Types>
size_t hash_combine (const Types&... args)
{
 size_t seed = 0;
 (_hash_combine(seed,args) , ...); // create hash value with seed over all args
 return seed;
}

However, the underlying hash combine function is not easy to implement (here we use Boost’s approach,
see e.g., http://www.boost.org/doc/libs/1_35_0/doc/html/hash/combine.html).
Platform-specific aspects also might matter.
For this reason, making it part of the library is a useful step.

For future compatibility we suggest to make the return type of hash_combine() a template parameter
with a default type:

N. Josuttis: P0814R0: hash_combine() Again

 2

template<typename RT = size_t, typename... Types>
RT hash_combine (const Types&... args)
{
 std::size_t seed = 0;
 (_hash_combine(seed,args) , ...); // create hash value with seed over all args
 return seed;
}

Proposed	Wording:	
Available in both <unordered_set> and <unordered_map>

add the following new function template:

namespace std {
 template<typename RT = size_t, typename... T>
 RT hash_combine (const T&... args);
}

with the following definition:

 template<typename RT = size_t, typename... T>

 RT hash_combine (const T&... args);

Requires: For any Ti the specialization of hash<Ti> is enabled (23.14.15).

Effects: Calls hash<Ti>()(argsi) for all i and combines the resulting hash value with the
following constraints:

 All return values are equal with the same input for a given execution of the program.
 For two different values t1 and t2, the probability that hash_combine(t1,…) and

hash_combine(t2,…) compare equal should be very small, approaching 1.0 /
numeric_limits<size_t>::max().

[Note: hash_combine(args1,args2) may differ from hash_combine(args2,args1) and
hash_combine(args1,args2,args3) may differ from
hash_combine(hash_combine(args1, args2), args3).]

Acknowledgements	
Thanks to all who incredibly helped me to prepare this paper, such as all people in the C++ library
working group.

