Feedback on P0214

Document Number P0820R4
Date 2018-06-08

Reply-to Tim Shen <timshen91@gmail.com>
Matthias Kretz <m.kretz@gsi.de>

Audience LWG
Abstract
We investigated some of our SIMD applications and have some feedback on P0214R9.

The presented change resolves an NB comment on the PDTS
Revision History

P0820R3 to P0O820R4

Removed changes for simd_abi: :deduce since it's already covered by P0964.
Remove changes to the simd_cast return types (to be reconsidered later).
Move concat and split related changes to P1118.

Rebase the mismatched wording onto the Parallelism v2 TS.

P0820R2 to PO820R3

e Rebase onto P0214R9.
e Adapt to P0964R1.
e Changed wording for alias scalar and fixed_size.

P0820R1 to PO820R2

e Rebased onto P0214R7.
e Extended static_simd _cast and simd_cast to use rebind_abi_t.
e Change simd_abi::scalar to an alias.

P0O820R0 to PO820R1

e Rebased onto P0214R6.
e Added reference implementation link.


mailto:timshen91@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0964r1.pdf

e For concat() and split(), instead of making them return simd types with implementation
defined ABls, make them return rebind_abi_t<...>, which is an extension and
replacement of original abi_for_size_t.

Removed the default value of "'n” in split_by().
Removed discussion on relational operators. Opened an issue for it
(https://issues.isocpp.org/show_bug.cgi?id=401).

e Proposed change to fixed_size from a struct to an alias, as well as guaranteeing the

alias to have deduced-context.

simd_abi::scalar and fixed_size<N> are not an aliases

One possible implementation of ABI is to create a centralized ABI struct, and specialize around
it:

enum class StoragePolicy { kXmm, kYmm, /* ... */ };
template <StoragePolicy policy, int N> struct Abi {};

template <typename T> using native = Abi<kYmm, 32 / sizeof(T)>;
template <typename T> using compatible = Abi<kXmm, 16 / sizeof(T)>;

Then every operation is implemented and specialized around the centralized struct Abi.

Unlike native and compatible, scalar and fixed_size is not an alias. Currently they require
extra specializations other than the ones on struct Abi.

Wording

Modify [parallel.simd.synopsis] as follows:

struetusing scalar 3= see below;
template <int N> struetusing fixed _size 3= see below;

Modify [parallel.simd.abi] as follows:

strtetusing scalar = see below;
template <int N> struetusing fixed_size 3= see below;

Modify [parallel.simd.abi] p3 as follows:
scalar is an alias for an unspecified ABI tag that is different from fixed size<1>. Use of the
scalar tag type requires data-parallel types to store a single element (i.e., simd::size() returns 1).

Modify [parallel.simd.abi] p5 as follows:


https://issues.isocpp.org/show_bug.cgi?id=401

fixed size<N> is an alias for an unspecified ABI tag. fixed_size does not introduce a
non-deduced context. Use of the simd_ab1i::fixed_size<N> tag type requires data-parallel types
to store N elements (i.e. simd<T, simd_abi::fixed_size<N>>::size() returns N). simd<T,
fixed_size<N>> and simd_mask<T, fixed_size<N>>withN > 0 and N <= max_fixed_size<T>
shall be supported. Additionally, for every supported simd<T, Abi> (see [simd.overview]), where
Abi is an ABI tag that is not a specialization of simd_abi::fixed_size, N == simd<T,
Abi>::size() shall be supported.

Reference

e The original paper: P0214R9
e Experimental implementation: https://github.com/google/dimsum



http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
https://github.com/google/dimsum

