
Feedback on P0214
Document Number P0820R4

Date 2018-06-08

Reply-to Tim Shen <​timshen91@gmail.com​>
Matthias Kretz <m.kretz@gsi.de>

Audience LWG

Abstract
We investigated some of our SIMD applications and have some feedback on ​P0214R9​.

The presented change resolves an NB comment on the PDTS

Revision History

P0820R3 to P0820R4
● Removed changes for ​simd_abi::deduce​ since it's already covered by P0964.
● Remove changes to the ​simd_cast​ return types (to be reconsidered later).
● Move concat and split related changes to P1118.
● Rebase the mismatched wording onto the Parallelism v2 TS.

P0820R2 to P0820R3
● Rebase onto ​P0214R9​.
● Adapt to ​P0964R1​.
● Changed wording for alias ​scalar​ and ​fixed_size​.

P0820R1 to P0820R2
● Rebased onto P0214R7.
● Extended ​static_simd_cast​ and ​simd_cast​ to use ​rebind_abi_t​.
● Change ​simd_abi::scalar​ to an alias.

P0820R0 to P0820R1
● Rebased onto P0214R6.
● Added reference implementation link.

mailto:timshen91@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0964r1.pdf

● For concat() and split(), instead of making them return simd types with implementation
defined ABIs, make them return ​rebind_abi_t<...>​, which is an extension and
replacement of original ​abi_for_size_t​.

● Removed the default value of ​̀n​` in ​split_by()​.
● Removed discussion on relational operators. Opened an issue for it

(​https://issues.isocpp.org/show_bug.cgi?id=401​).
● Proposed change to fixed_size from a struct to an alias, as well as guaranteeing the

alias to have deduced-context.

simd_abi::scalar and fixed_size<N> are not an aliases
One possible implementation of ABI is to create a centralized ABI struct, and specialize around
it:

enum class StoragePolicy { kXmm, kYmm, /* ... */ };

template <StoragePolicy policy, int N> struct Abi {};

template <typename T> using native = Abi<kYmm, 32 / sizeof(T)>;

template <typename T> using compatible = Abi<kXmm, 16 / sizeof(T)>;

Then every operation is implemented and specialized around the centralized ​struct Abi​.

Unlike ​native​ and ​compatible​, ​scalar​ and ​fixed_size​ is not an alias. Currently they require
extra specializations other than the ones on ​struct Abi​.

Wording
Modify [parallel.simd.synopsis] as follows:

struct​using​ scalar ​{}​= ​see below​;
template <int N> ​struct​using​ fixed_size ​{}​= ​see below​;

Modify [parallel.simd.abi] as follows:

struct​using​ scalar ​{}​= ​see below​;
template <int N> ​struct​using​ fixed_size ​{}​= ​see below​;

Modify [parallel.simd.abi] p3 as follows:
scalar​ is an alias for an unspecified ABI tag that is different from ​fixed_size<1>​. ​Use of the
scalar tag type requires data-parallel types to store a single element (i.e., simd::size() returns 1).
[Note: ​scalar​ shall not be an alias for ​fixed_size<1>​. — end note]

Modify [parallel.simd.abi] p5 as follows:

https://issues.isocpp.org/show_bug.cgi?id=401

fixed_size<N>​ is an alias for an unspecified ABI tag. ​fixed_size​ does not introduce a
non-deduced context. ​Use of the ​simd_abi::fixed_size<N>​ tag type requires data-parallel types
to store N elements (i.e. ​simd<T, simd_abi::fixed_size<N>>::size()​ returns N). ​simd<T,
fixed_size<N>>​ and ​simd_mask<T, fixed_size<N>>​ with ​N > 0​ and ​N <= max_fixed_size<T>
shall be supported. Additionally, for every supported ​simd<T, Abi>​ (see [simd.overview]), where
Abi is an ABI tag that is not a specialization of ​simd_abi::fixed_size, N == simd<T,
Abi>::size()​ shall be supported.

Reference
● The original paper: ​P0214R9
● Experimental implementation: ​https://github.com/google/dimsum

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
https://github.com/google/dimsum

