Feedback on P0214R5

Document Number P0820R0

Date 2017-10-13
Reply-to Tim Shen <timshen91@gmail.com>
Audience SG1, LEWG

Abstract
We investigated some of our SIMD applications and have some feedback on p0214r5.

This proposal does not intend to slow down p0214r5 from getting into the TS, but points out the
flaws that are likely to encounter sooner or later. Fixing these flaws now is supposed to save
time for the future.

Is abi_for_size t the right way to specify the ABIs for split() and
concat()?

Currently, the return types of split() and concat() don't depend on the input ABI(s) other than
for calculating sizes. This limits the implementation by enforcing the following expressions to
produce the same type of objects:

e concat(native_simd<int32>())
e concat(compatible_simd<int32>(), compatible_simd<int32>())

Suppose that compatible_simd<int32> is implemented by 16-bytes, XMM registers on x86; and
native_simd<int32> is implemented by 32-bytes, YMM registers on x86. Ideally, we'd like both
concat()s to be no-ops, if they are allowed to return different types: in the first case the return
value stays in the same YMM register; in the second case, the returned values still stay in the
same XMM registers.

To make both calls no-ops, the return types of those two need to be different.
That said, it may not practically matter in the function body, if the optimizer is smart enough. It

always affects function call boundaries, though. Example of a function call boundary:
https://godbolt.org/g/6EEE8H.

The fundamental issue is that abi_for_size only depends on the element type and the size.
Since it is only used by concat() and split(), we propose to drop abi_for_size and
abi_for_size_t, and let the implementation pick the returned ABI(s) for concat() and split().

mailto:timshen91@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
https://godbolt.org/g/6EEE8H

Proposed Change

—typepame—abi—for—size<tNerriypes
template <size t... Sizes, class T, class A>

tuple<simd<T, abi—fer—size—+t<Sizes>/* implementation defined */>...>
split(const simd<T, A>&);

template <size t... Sizes, class T, class A>
tuple<simd_mask<T, abi—fer—size—t<Sizes>/* implementation defined */>...>
split(const simd_mask<T, A>&);

Returns: A tuple of simd/simd_mask objects with the j-th simd/simd_mask element of the j-th
tuple element initialized to the value of the element in x with index i+ partial sum of the first j
values in the Sizes pack. The pack expansions in the returned type are on Sizes.... The
returned type contains in total (Sizes + ...) number of elements.

template <class T, class... As>
simd<T, i —s4 tmd—
concat(const simd<T, As>&...);
template <class T, class... As>

/* implementation defined */>

— —_—]

simd<T, /* implementation defined */>

concat(const simd_mask<T, As>&...);

Returns: A simd/simd_mask object initialized with the concatenated values in the xs pack of
simd/simd_- mask objects. The i-th simd/simd_mask element of the j-th parameter in the xs
pack is copied to the return value’s element with index i + partial sum of the size() of the first j
parameters in the xs pack. The returned type contains (simd size v<T, As> + ..) number of
elements.

concat() doesn't support std::array

We propose it for being consistent with split(). Users may take the array from split(), do some
operations, and concat back the array. It'd be hard for them to use the existing variadic
parameter concat().

Proposed Change

template <class T, class Abi, size t N>

simd<T, /* implementation defined */> concat(const std::array<simd<T, Abi>, N>&):

template <class T, class Abi, size t N>

simd mask<T, /* implementation defined */> concat(
const std::array<simd mask<T, Abi>, N>&);

Returns: A simd/simd_mask object, the i-th element of which is initialized by the input element,
indexed by 1 / simd_size v<T, Abi> as the array index,and 1 % simd_size v<T, Abi> as the
simd/simd_mask array element index. The returned type contains (simd size v<T, Abi> * N)
number of elements.

split() is sometimes verbose to use

It is sometimes verbose and not intuitive to use the array version of split(), e.g.

template <typename T, typename Abi>

voild Foo(simd<T, Abi> a) {
auto arr = split<simd<T, fixed_size<a.size() / 4>>>(3);
// auto arr = split_by<4>(a) is much better.
[* . */

}

and it's even more verbose for non-fixed_size types. We propose to add split_by() that splits
the input by an 'n” parameter. 'n’ is defaulted to 2.

Consequently, split_by()::abi_type may be an ABI that users can't spell out.

Proposed Change

template <size t n = 2, class T, class A>
array<simd<T, /* implementation defined */>, n> split by(

const simd<T, A>& x):
template <size t n = 2, class T, class A>

array<simd mask<T, /* implementation defined */>, n> split_by(
const simd mask<T, A>& x):

Remarks: The calls to the functions are ill-formed unless simd _size v<T, A> is a multiple of n.

Returns: An array of simd/simd mask objects with the i-th simd/simd mask element of the j-th
array element initialized to the value of the element in x with index i + j *(simd_size v<T, A>/n).
Each element in the returned array has size simd size v<T, A>::size() / n elements.

Relation operators don't return bool

Currently relation operations return simd_mask<>, which can't be converted to bools. This is
inconsistent with what other algorithms expect. The proposed change is to rename the
operators to normal free functions, but also add operator==() and operator!=() for returning
bools. Alternatively, the operators can also be deleted.

It's unclear to us whether it's useful to add lexicographical, bool-returning operator<(),
operator>(), operator<=(), and operator>=(). Avoid them for now.

Name candidates for component-wise ==, |=, >=, <=, >, <, respectively:

e eq,ne, ge,le gt lt
cmpeq, cmpne, cmpge, cmple, cmpgt, cmplt
cmp_eq, cmp_ne, cmp_ge, cmp_le, cmp_gt, cmp_It
equal_to, not_equal_to, greater_equal, less_equal, greater, less
simd_equal_to, simd_not_equal_to, simd_greater_equal, simd_less_equal,
simd_greater, simd_less

Proposed Change

friend mask_type eperater==eq(const simd&, const simd&);
friend mask_type eperaterl=ne(const simd&, const simd&);
friend mask_type eperater>=ge(const simd&, const simd&);
friend mask_type eperater<=le(const simd&, const simd&);
friend mask_type eperater>gt(const simd&, const simd&);
friend mask_type eperater<lt(const simd&, const simd&);

Returns: A simd_mask object initialized with the results of the component-wise application of the

indicated eperateroperation.
Throws: Nothing.

friend simd_mask eperater==eq(const simd_mask&, const simd_mask&) noexcept;
friend simd_mask eperaterl=ne(const simd_mask&, const simd_mask&) noexcept;

Returns: A simd_mask object initialized with the results of the component-wise application of the
indicated eperateroperation.

friend bool operator==(const simd&, const simd&);

friend bool operator!=(const simd&, const simd&):

friend bool operator==(const simd mask&, const simd mask&):

friend bool operator!=(const simd mask&, const simd mask&):

Returns: The result of performing lexicographical operation of the arguments. The type of
operation is indicated by the operators.
Throws: Nothing.

Alternative Proposal

Same to proposed change, but remove the definitions of operators.

fixed_size<N> might be hard to implement

In our implementation (without fixed_size<N> yet), all ABls are defined in terms of (storage
policy, total bytes), e.g.

enum class StoragePolicy { kXmm, kYmm, /* ... */ };
template <StoragePolicy policy, size_t num_bytes> struct Abi {};

template <typename T> using native = Abi<kYmm, 32>;
template <typename T> using compatible = Abi<kXmm, 16>;

This implementation enables the opportunity to experiment with ABIs like
Abi<StoragePolicy: :kXmm, 32> (use two XMM registers). All algorithms are implemented and
specialized for StoragePolicy and num_bytes.

We think that the implementation above is a reasonable implementation, and should be allowed.
The fundamental reason is that ABI is a "low-level" term, defined at binary level, as well as
"number of bytes". Meanwhile, "element type" and "number of element" are high-level terms. To
not mix low-level and high-level terms in a same place is good.

However, to support fixed_size<N>, the implementation needs to specialize again for many
operations, as fixed_size is its own struct, not an alias. Also, fixed_size<N> can't be
represented by struct Abi.

This feedback doesn't have a proposed change, as several options we thought about are too
complicated. That said, the following are the considered changes.

(1) remove fixed_size<N>, and change fixed_size_simd<T, N> to be implementation defined.
Example implementation:

template <typename T, size_t N>
using fixed_size_simd =
simd<T, Abi<StoragePolicy::kXmm, sizeof(T) * N>>;

The problem is that fixed_size_simd<> may introduce a non-deduced context.
(2) change fixed_size<N> to fixed_size<T, N>:

template <typename T, size_t N>
using fixed _size = Abi<StoragePolicy::kXmm, sizeof(T) * N>;

Problem is that it complicates the ABI. For example, is fixed_size<int32_t, N>the same as
fixed_size<float, N>? It may also introduce a non-deduced context.

