Document number: P0974R0

Date: 2018-03-30
Audience: LEWG, LWG
Reply-to: Jonathan Ringle <jonringle at gmail dot com>

A Function Returning Whether An Underlying Type
Value Is a Valid Enumerator of a Given Enumeration

Hello, Is It Me You're Looking For?

Table of Contents

L TEEOAUCTION. ...ttt et a e et e s bt e et e e s bt e et e e sabeeabeesseeeabeesaeeenbeanseeeneee
IT. MOtiVAtion QNd SCOPEC.....c.vieiiiiiiieiieeiteeite ettt ettt et et e et e seteeteesteeesbeessaesaseesseesnseenseesnseenseesnseesnnses
III. Impact On the Standard.............c.eeeoiieiiiieiieeee et e e e et e e st e e s taeesssaeesnseaensseeens
TV. DESIZN DIECISIONS. ...uvieeutieiieeiietie et esite et ette e bt e tteeeteesteesabeesseeeaseeseaasseeseesnseenseeasseenseesnseenseeennseeesnnses
V. Technical SPECITICAtIONS.cccuiiiiiiieciii ettt ettt ee e e et e e st e e sbeeesabee e sbeeesbeeessnaaaeeeeenssaeeeens
VI ACKNOWIEAZEMENLS.eoiiiiiiiiiiieiieie ettt ettt et s e et e stae et e e saeeesbeessaesnseenseeeensseeeennne
VL RETRIEIICES. ...ttt ettt et a e et e e at e et e bt e et e e s abeeabe e e bt e e e easbeeeeanbeeeennees

l. Introduction

This proposal is to provide a safe way to determine if the value of an underlying type can be converted
to a valid enumerator for a given enumeration type.

Il. Motivation and Scope

There are situations, particularly when deserializing a stream of data, when a piece of data of an
underlying type contains a value that should be assigned to a variable instance of an enum class type.
However, since this data value may be coming from an unknown and/or untrusted source, it must be
validated before trying to cast it to store it in the enum variable instance.

If all the enumerators in an enumeration is a set of sequential consecutive values, then a function to
validate a value of the underlying type can be expressed as simply:

(Emin <= value <= Emax)

However, it is often the case that the list of enumerators in an enumeration is a non-sequential, non-
consecutive list of values. In this case, a function to validate could be expressed in the following ways:

1. A switch statement on the value to test with a case for every valid enumerator that returns true,
or returns false in the default case

2. A search for the value in a table of valid enumerators. The search can be optimized to a binary
search if the table is maintained in a sorted order.

All of these options place an undue maintenance burden on the user (including the simple case where
all of the enumerators in the enumeration are sequentially consecutive). An expression or function that
performs an enum validation can be easily broken if new enumerator values are added or removed from
the enumeration type, and the maintainer fails to also consider any validation code that may need to be
updated as well.

Currently, there is a lack of support in C++ and the standard library to facilitate generalizing this
particular kind of validation.

* There is no way to automatically determine the minimum and maximum enumerator values of

an enumeration.

* There is no facility to automatically put into a container all of the valid enumerator values of an

enumeration.

* There is no way to automatically determine the number of unique enumerator values of an

enumeration (without resorting to preprocessor tricks).

If the maintainer wants to have validation code to validate that a underlying value is indeed a valid
enumerator value of an enumeration, he/she must do so manually and separately from the enum
definition using metadata that is derived and duplicated from the enum definition itself. Furthermore, if
the user code needs similar validation code for other enum types, similar code must be duplicated and
maintained separately.

There are implementations such as better-enums[1] that also tackle this problem (and go further to

tackle other things such as enum conversion to/from strings). It does so by implementing reflection via
preprocessor macros that then generate code to do its “magic”.

The scope of this proposal is only concerned with defining a standard function interface that tests if an
enumerator is valid for a given enumeration. There could be future proposals put forth to propose other
things like an enum to string conversion as a template overload to the existing std: :to string

interface:

namespace std {

template <typename E> requires is_enum<E>
std::string to string(E value);

}

The following code implements the proposed is enumerator<E> function using language and
library facilities currently available to the user code in C++17. This implementation uses a traits pattern

that serves to help illustrate the shortcomings there currently are and what motivates this proposal by

giving us a language in which to talk about the problems.

http://aantron.github.io/better-enums
http://aantron.github.io/better-enums/

The following traits are used:

is consecutive:abool indicating if all the valid enumerators in the enumeration are

sequentially consecutive

min: the minimum enumerator value of type E that is found in the enumeration
max: the maximum enumerator value of type E that is found in the enumeration

is sorted: abool indicating if the enumerator values found in the enumerators[] trait

are in a sorted order (it meets the sort requirements of the std: :binary search algorithm)

count:asize t holding the number of enumerators found in the enumeration. This is used
to find the last element of the enumerators [] trait. This assumes that the number of
elements in the enumerators[] traits is equal to the number of enumerators found in the
enumeration. This assumption can be validated by user code with a static assert and

helps the maintainer with the burden of keeping up to date the enumerators[] trait.

enumerators/[]: an array holding an entry of type E for each valid enumerator found in the

enumeration

Even though the below implementation of is enumerator<E> consolidates in a single place the

most efficient algorithm to perform the validation, it fails to ease any of the maintenance burdens that

already exist. The following maintenance burdens are still inflicted upon the maintainer:

If is consecutive=true, then the maintainer has the burden to keep the value of the min
and max traits up to date if there are enumerator values added or removed from the

enumeration.

If is consecutive=false, the maintainer has the burden to keep the value of the count

trait up to date if there are enumerator values added or removed from the enumeration.

If is consecutive=false, the maintainer has the burden to update the

enumerators [] trait if there are enumerator values added or removed from the enumeration.

If is consecutive=falseand is_sorted=true, then the maintainer has the
additional burden to keep the enumerators[] trait in a sorted order if there are enumerator
values added or removed from the enumeration. The optimization benefit of

is sorted=true increases as the number of enumerator values in the enumeration
increases. Unfortunately, this also increases the possibility of errors in the sort order due to the

manual maintenance of the sorting.

enum cast.h:

#ifndef ENUM_CAST H
#define ENUM CAST H

#include <algorithm>
#include <stdexcept>
#include <string>
#include <type traits>

template <typename E>
struct enum traits { };

template <typename E, size t N>
constexpr const E* endof(const E ra[N]) { return ra + N; }

template <typename E>
bool is enumerator(std::underlying type t<E> v)

{
using traits = enum traits<E>;
using U = std::underlying type t<E>;
if (traits::is_consecutive)
return static cast<U>(traits::min) <= v && v <= static cast<U>(traits::max);

constexpr const E* first = traits::enumerators;
constexpr const E* last = endof<E, traits::count>(traits::enumerators);
return (traits::is sorted)
? std::binary search(first, last, static cast<E>(v))
: std::find(first, last, static cast<E>(v)) != last;
}

template <typename E>
E enum cast(std::underlying type t<E> v)
{
if (is_enumerator<E>(v))
return static cast<E>(v);
using namespace std::literals;
throw std::range _error("invalid enum value "s
+ std::to string(static cast<int>(v))
+ " for type "
+ typeid(E).name());

}
#endif // ENUM CAST H

The below user code example defines the enum class Crayola.

The left side shows what the user code would need to do using the above implementation of

is enumerator<E> with C++17 and the additional code that the user must manually maintain. It
employs a preprocessor “trick” to obtain a count of the number of valid enumerator values in the
enumeration. Helpful comments are given to help maintainers of this code to not break the mechanism
of the preprocessor “trick”. The resulting ENUM COUNT is stored in the count trait, which is then
usedina static assert (in crayola.cc) to verify that the number of valid enumerators in the

enum class agrees with the number of elements found in the enumerators|[] trait.

The right side shows what the user code would look like using the proposed template function
std::is enumerator<E> being made available to the user. The user no longer needs to try to
determine the number of enumerators and no longer needs to maintain a separate table of valid
enumerators.

Before

After

enum cast.h:

#include <algorithm>
#include <type traits>

template <typename E>
struct enum_traits { };

template <typename E, size t N>
constexpr const E* endof(const E ra[N]) { return ra + N; }

template <typename E>
bool is_enumerator(std::underlying type t<E> v)

{
using traits = enum_traits<E>;
using U = std::underlying type t<E>;
if (traits::is_consecutive)
return static cast<U>(traits::min) <= v && v <= static cast<U>(traits::max);
constexpr const E* first = traits::enumerators;
constexpr const E* last = endof<E, traits::count>(traits::enumerators);
return (traits::is_sorted)
? std::binary_search(first, last, static cast<E>(v))
: std::find(first, last, static cast<E>(v)) != last;
}
crayola.h: crayola.h:

#include <cstdint>
#include <enum cast.h>

enum class Crayola : uint32_t {

// Only one enumerator definition per line

// No empty lines between BEGIN_COUNT_ and ENUM_COUNT_

// No commented out enumerators between

// BEGIN COUNT and ENUM COUNT

BEGIN COUNT_ = _ LINE_,

Red = OxEDOA3F,

Maroon = 0x(32148,

BrickRed = 0x(C62D42,

OliveGreen = 0xB5B35C,

Asparagus = 0x7BA05B,

Green = 0x3AA655,

ForestGreen = Ox5FA777,

TealBlue = 0x008080,

Aquamarine = Ox95EOQES8,

SkyBlue = Ox76D7EA,

Brown = OxAF593E,

ENUM_COUNT_ = _ LINE__ - BEGIN_COUNT_ - 1,
+

template <>
struct enum_traits<Crayola> {
static constexpr const bool is_consecutive = false;
static constexpr const Crayola min = Crayola{};// Doesn't matter when
static constexpr const Crayola max = Crayola{};// is_consecutive=false
static constexpr const bool is_sorted = false;
static constexpr const size t count =
static cast<size t>(Crayola::ENUM_COUNT_);
static const Crayola enumerators[];

#include <cstdint>

enum class Crayola :

uint32 t {
Red = OxEDOA3F,

Maroon = 0x(32148,
BrickRed = 0x(C62D42,
OliveGreen = 0xB5B35C,
Asparagus = 0x7BA05B,
Green = 0x3AA655,
ForestGreen = Ox5FA777,
TealBlue = 0x008080,
Aquamarine = Ox95EOQES8,
SkyBlue = Ox76D7EA,
Brown = OxAF593E,

crayola.cc:

#include "crayola.h"

const Crayola enum_traits<Crayola>::enumerators[] = {

Crayola: :Red,
Crayola::Maroon,
Crayola::BrickRed,
Crayola::0liveGreen,
Crayola::Asparagus,
Crayola::Green,
Crayola::ForestGreen,
Crayola::TealBlue,
Crayola: :Aquamarine,
Crayola::SkyBlue,
Crayola::Brown,

+

template <typename T, size t N>
constexpr size t array size(T (&)[N]) { return N; }

static assert(array_size(enum_traits<Crayola>::enumerators)
== enum_traits<Crayola>::count,
"Crayola enum mismatch");

crayola-usage.cc:

#include "crayola.h"
void crayola_usage()

uint32 t underlying col = OxEDOA3F;
if (is_enumerator<Crayola>(underlying col)) {
// can be safely cast
Crayola col = static cast<Crayola>(underlying col);
std::cout << "color " << std::hex << static cast<int>(col)
<< " is valid\n";
} else {
std::cout << "color " << std::hex << underlying col
<< " is NOT valid\n";
}
}

lll. Impact On the Standard

Existing user code is not impacted by this addition, and provides an easy way for user code to validate
an underlying type t value from an untrusted source without adding any additional
maintenance burden beyond simply using the proposed is enumerator<E> function to perform

this validation.

The use of the is enumerator<E> function in user code does potentially have an impact on
memory usage since a table holding all valid enumerators in the enumeration may need to be created in
order to perform this validation at runtime. However, if the user needed this functionality, and didn't
use is enumerator<E>, they would still need to implement something that has a similar cost. If
the user has no need for enumeration validation for an enum type E that they may have in their code
and doesn't invoke the is enumerator<E> function in their code, there is no cost added to their

code. This is a case of you pay for what you use.

IV. Design Decisions

This proposal is about specifying the interface signature for the is enumerator<E> function and
optionally for an enum cast<E> conversion function. How these functions are implemented,
whether it be as a compiler intrinsic function, or using static reflection[2] or some other means is left as
a standard library implementation detail. This proposal should not be held dependent upon any future
proposals (such as static reflection support that could be used to implement these functions). The

is enumerator<E> function is useful now and compatible with reflection. At the least, these
functions could be implemented as compiler intrinsic functions now and converted to use a static
reflection based implementation in the future without impacting user code.

Even though static reflection could give the tools to be able to implement the is enumerator<E>
function by user code, it should be provided by the standard library.

A possible implementation based on the Mirror reflection library[3] static reflection examples proposed
in p038512[4] section 5.4 is shown below:

template <typename E>
class enum properties {
private:
using namespace std;
using U = underlying type t<E>;
template <typename ... MEC>
struct _hlpr {
static void eat(bool ...) { }
static auto make map(void) {
map<E, string> res;
_eat(res.emplace(
reflect::get constant v<MEC>,
string(reflect::get base name<MEC>())
).second...);
return res;

}
+
using ME = $reflect(E);

using hlpr = reflect::unpack sequence t<
reflect::get enumerators t<ME>,

_hlpr
>
auto m_ = hlpr:: make map();
public:

constexpr E min() const { return m_.begin()->first; }
constexpr E max() const { return m_.rbegin()->first; }
constexpr bool is consecutive() const {

U prev = static cast<U>(m_.begin()->first);

for (auto& e : m_) {

if (prev == static cast<U>(e.first)) continue;
if (prev + 1 != static cast<U>(e.first)) return false;
prev = static cast<U>(e.first);
}
return true;
)
constexpr bool has enumerator(U v) {
return m_.find(static cast<E>(v)) !'= m .end();
}
constexpr bool has enumerator(E e) {
return m_.find(e) !=m .end();
}

constexpr const string& to string(E e) const {
return m_.at(e);
}

};

namespace std {
template <typename E>
constexpr bool is enumerator(underlying type t<E> v)

{
using U = underlying type t<E>;
constexpr const enum properties<E> enum prop;
if constexpr (enum prop.is_consecutive())
return static cast<U>(enum prop.min()) <= v && v <= static cast<U>(enum prop.max());
else
return enum_prop.has_enumerator(v);
}

template <typename E>

constexpr bool is_enumerator(E e)

{
constexpr const enum_properties<E> enum_prop;
return enum prop.has _enumerator(e);

—

V. Technical Specifications

The proposed function should have the following signature and should return a boo1 indicating
whether or not the passed in value of the underlying type t<E> argument is a valid enumerator
found in the enumeration type E:

namespace std {
template <typename E> requires is_enum<E>
constexpr bool is enumerator(underlying type t<E>);
}
It is possible to initialize an enum with an value that is not present as an enumerator value in the

enumeration. Consider the following:

enum Color { Red = 1, Blue, Green };

Color color = Color{};

The variable color now holds an invalid value 0 that does not correspond to any enumerator in the
enumeration. Therefore, it seems reasonable that someone might want to use is _enumerator<E> to
validate if an enum variable of type E holds a valid enumerator. So the following overload should also
be provided and should return a bool indicating whether or not the passed in value of enum type E

argument itself holds a valid enumerator found in the enumeration type E:

namespace std {
template <typename E> requires is_enum<E>
constexpr bool is enumerator(E);

}

Optional:

This also makes it possible to easily add an implementation of enum cast<E> that is implemented in

terms of is enumerator<E>

namespace std {
template <typename E> requires is_enum<E>
E enum_cast(underlying type t<E> v)

{
if (is_enumerator<E>(v))
return static cast<E>(v);
throw std::range error(...);
}
}

VI. Acknowledgements

I am grateful for the feedback received on:

https://groups.google.com/a/isocpp.org/forum/?utm medium=email&utm_source=footer#!topic/std-
proposals/41KbQVIMJL4

https://groups.google.com/a/isocpp.org/forum/?utm_medium=email&utm_source=footer#!topic/std-proposals/41KbQVJMJL4
https://groups.google.com/a/isocpp.org/forum/?utm_medium=email&utm_source=footer#!topic/std-proposals/41KbQVJMJL4

VIl. References

[1]: Anton Bachin, better-enums, http://aantron.github.io/better-enums/

[2]: Matis Chochlik, Axel Naumann, David Sankel, Static reflection, http://wg21.link/p0194r4

[3]: Matas Chochlik, Mirror C++ reflection library documentation (current version)., http://matus-
chochlik.github.io/mirror/doc/html/

[4]: Matas Chochlik, Axel Naumann, David Sankel, Static reflection Rationale, design and evolution,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

	I. Introduction
	II. Motivation and Scope
	III. Impact On the Standard
	IV. Design Decisions
	V. Technical Specifications
	VI. Acknowledgements
	VII. References

