
Array size deduction in new-expressions

Timur Doumler (papers@timur.audio)

Document #: P1009R0
Date: 2018-10-08
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

In this paper we propose to fix a particular inconsistency in the initialization rules of C++
by allowing array size deduction in new-expressions. This aligns their behaviour with that of
initialization everywhere else in the language.

1 Motivation
Last year, Bjarne Stroustrup pointed out the following inconsistency in the C++ language:

double a[]{1,2,3}; // this declaration is OK, ...
double* p = new double[]{1,2,3}; // ...but this one is ill-formed!

Jens Maurer promptly provided the explanation: For a new-expression, the expression inside
the square brackets is currently mandatory according to the C++ grammar. When uniform
initialization was introduced for C++11, the rule about deducing the size of the array from the
number of initializers was never extended to the new-expression case. Presumably this was simply
overlooked. There is no fundamental reason why we cannot make this work.
Admittedly, deducing the array size in a new-expression is code that probably only very few people
would actually write. One could therefore argue that this is a problem not worth fixing.
However, when teaching C++ initialization rules, we observe the following. When people learn
about uniform initailization, and then realise that you can (and perhaps should) use it also in
new-expressions, they ask:

“Does uniform initialization in a new-expression follow the same rules as everywhere
else?”

And the answer is, of course,

“Well, most of the time, except...”

These things are exactly the reason why C++ initalization rules are so notorious for being compli-
cated, and why most C++ developers struggle with them. There are just too many non-obvious
inconsistencies. We therefore propose to remove this particular one—not because this is a problem
that people would frequently run into (they don’t), but because fixing it is straightforward, the
fix is a pure extension that does not impact any other part of the standard, and it would make
initialization rules in C++ simpler, more uniform, and easier to teach.

1

mailto:papers@timur.audio

2 Proposed wording
The changes are relative to the C++ working paper [Smith2018].
Modify [expr.new] paragraph 1 as follows:

noptr-new-declarator :
[expressionopt] attribute-specifier-seqopt

noptr-new-declarator [constant-expression] attribute-specifier-seqopt

Modify [expr.new] paragraph 6 as follows:

Every constant-expression in a noptr-new-declarator shall be a converted constant expres-
sion of type std::size_t and shall evaluate to a strictly positive value. TIf the expression
in a noptr-new-declarator is present, it is implicitly converted to std::size_t. [Example:
Given the definition int n = 42, new float[n][5] is well-formed (because n is the ex-
pression of a noptr-new-declarator), but new float[5][n] is ill-formed (because n is
not a constant expression). —end example] If the expression in a noptr-new-declarator
is omitted, a new-initializer shall be provided and shall be a braced-init-list. In this
case the number of array elements is determined by the number of initial elements as
described in [dcl.init.aggr] for initializing an array with a braced-init-list.

Acknowledgements
Many thanks to Richard Smith for his help with the wording.

References

[Smith2018] Richard Smith. Working Draft, Standard for Programming Language C++. https:
//github.com/cplusplus/draft, 2018-10-08.

2

https://github.com/cplusplus/draft
https://github.com/cplusplus/draft

	1 Motivation
	2 Proposed wording
	References

