P1029R3 INOVE = bitcopies

Document #: P1029R3

Date: 2020-01-12

Project: Programming Language C++
Evolution Working Group

Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

This proposes a new default for C++ move constructors = bitcopies, which enables more aggressive
optimisation of move constructions for such types than is possible at present.

The primary motivation of this proposal is to propose a form of move relocation so unambitious,
uncontentious and conservative that it has a realistic chance of getting approved by WG21 for C++
23. Indeed, one objection to R2 in Belfast was any use of the word ‘relocate’, so in R3 we no longer
say that word in order to avoid that class of objection as well. We now speak in terms of move
bitcopying only.

Something similar in effect, though not in semantics, to this proposed feature is already in the clang
compiler via the [[clang::trivial_abil] attribute!. The main difference is that this proposal
also supports move bitcopying polymorphic types.

Changes since R2:

e We no longer use the word ‘relocate’ in this proposal, lest there be any concern that
the ‘empty relocation space’ be affected by this proposal.

e A clarifying note was added that in derived classes, defaulting the move constructor
does not propagate bitcopying move semantics even if all base classes and member
variables have bitcopying move constructors.

e Added Gasper’s EWG-I suggestion that = bitcopies(auto) ought to be how a de-
rived class defaults the move constructor to bitcopying if all base classes and member
variables have bitcopying compatible move constructors.

e Removed all reference to prior papers on relocation, because some felt those citations
were staking a claim to ‘the relocation space’. Those interested in additional reading
should consult the R2 version of this paper.

Contents
1 Introduction 2
2 Proposed Design 4
2.1 Worked example, and effect on codegen 5
2.1.1 With current compilers, without = bitcopies: 6

1h‘c‘cps ://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi

mailto:s_sourceforge@nedprod.com
https://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi

0 N O Ut R W N

©

2.1.2 With the proposed = bitcopies: 8
2.1.3 How do you know that the code in the second example is feasibly generatable

by a compiler? 9

2.2 So what? 9

3 Design decisions, guidelines and rationale 9
4 Technical specifications 9
5 Acknowledgements 10
6 References 10

1 Introduction

The most aggressive optimisations which the C++ compiler can currently perform are to types
which meet the TriviallyCopyable requirements:

e Every copy constructor is trivial or deleted.
e Every move constructor is trivial or deleted.
e Every copy assignment operator is trivial or deleted.

e Every move assignment operator is trivial or deleted.

At least one copy constructor, move constructor, copy assignment operator, or move assign-
ment operator is non-deleted.

e Trivial non-deleted destructor.

All the integral types meet TriviallyCopyable, as do C structures. The compiler is thus free to
store such types in CPU registers, relocate them at its convenience in memory as if by memcpy, and
overwrite their storage as no destruction is needed. This greatly simplifies the job of the compiler
optimiser, making for tighter codegen, faster compile times, and less stack usage, all highly desirable
things.

There are quite a lot of types in the standard library and in user code which do not meet
TriviallyCopyable, yet are completely safe to be relocated arbitrarily, at any time and for any
reason, in memory as if by memcpy. For example, a std::unique_ptr<T> implementation might
have a similar implementation to:

template<class T> class unique_ptr
{
T x_ptr{nullptr};
public:
unique_ptr() = default;
unique_ptr(unique_ptr &&o0) : _ptr(o._ptr) { o._ptr = nullptr; }
~unique_ptr() { delete _ptr; _ptr = nullptr; }

1

[N I

0 N O Ut R W N

In current compilers, returning from a function a std::unique_ptr<T> will have a much heavier
ABI overhead over returning a T*, because the lack of trivial copyability means that the compiler
must use the stack to return unique ptrs, whereas the naked pointer can be directly returned in a
CPU register (see worked example in assembler later in this paper).

With = bitcopies, a unique_ptr implementation might instead be written:

template<class T> class unique_ptr

{
T * ptr{nullptr};
public:
constexpr unique_ptr() = default;
unique_ptr(unique_ptr &&) = bitcopies; // This type is move bitcopying!
~unique_ptr() { delete _ptr; _ptr = nullptr; }
}i

and the compiler would now know that this type can be arbitrarily relocated in memory, with
no ill effect, via the following as-if sequence:

unique_ptr<T> x*dest, *src;

// Copy bytes of src to dest
memcpy (dest, src, sizeof(unique_ptr<T>));

// Copy bytes of constexpr default constructed instance to src
unique_ptr<T> default_constructed;
memcpy(src, &default_constructed, sizeof(unique_ptr<T>));

When the move constructor = bitcopies, the programmer is giving the explicit guarantee to the
compiler that for this type:

1. Move construction equals two as-if memcpy()’s, one from old storage to new, one from a
constexpr? default constructed instance to old.

2. That any non-trivial destruction of a default constructed instance of the type has mo side
effects (and thus can be safely elided by the compiler if it knows that an instance is default
constructed).

Because of these warranties made by the programmer to the C++ compiler, returning STL contain-
ers by value from functions can now be optimal in terms of codegen (see worked example in assembler
later in this paper). A std::vector<T> with default allocator might have a similar implementation
to:

template<class T> class vector
{

T *_begin{nullptr}, *_end{nullptr}, *x_capacity{nullptr};
public:

constexpr vector() = default;

vector(vector &&) = bitcopies;
// memcpy src to dest, then memcpy constexpr default instace over src i.e. same as:

2In this proposal, one may only use = bitcopies with types with a in-class defined, constexpr default constructor.

10
11
12
13
14
15

// vector(vector &&0) : _begin(o._begin), _end(o._end), _capacity(o._capacity) { o._begin = o._end =
0._capacity = nullptr; }

// delete of a nullptr has no side effects, so this destructor implementation
// meets the guarantee given to the compiler.
~vector() { delete _begin; _begin = _end = _capacity = nullptr; }

+

Because the compiler knows that this type is move bitcopyable, and destructing moved-from in-
stances has no side effects, it can bit copy the instance into CPU registers for the return rather than
using the stack, if the target architecture has sufficient CPU registers return capacity. This brings
the same power of optimisation to a large subset of non-trivially-copyable C++ types.

2 Proposed Design

1. That a first new default choice = bitcopies become applicable to move constructors. The
programmer applies this implementation if they wish to guarantee to the compiler that the
move constructor and destructor implementation have stronger guarantees than usual.

2. That a second new default choice = bitcopies(auto) become applicable to move constructors.
The programmer applies this implementation if they wish the compiler to examine the move
constructors of all base types and member variables, and mark this type’s move constructor as
= bitcopies if all base types and member variables have a move constructor with = bitcopies
compatible semantics.

3. It shall be a compile time diagnostic if:

e Not all base classes are either trivially copyable, or there is a move constructor in a base
class without = bitcopies semantics.

e If there is a virtual inheritance anywhere in the inheritance tree.

e Not all member variable data types are either trivially copyable, or any member data
type has a move constructor without = bitcopies semantics.

e The type does not have a non-deleted, constexpr, in-class defined default constructor.
This implies that all base classes and member variables must have a constexpr, in-class
defined constructor. Note that the default constructor need not be public, = bitcopies
is a move constructor implementation, and thus can call non-public member functions.

4. Types with virtual destructors and = bitcopies move constructors are permitted. If the
programmer destructs a such a type, and the compiler knows it contains a default constructed
instance, the compiler may skip calling the virtual destructor.

[Note: This has a mild corner case risk: move constructing a derived object via its
base type would reset the vptr of the moved-from object to the vptr of the base
type, which some users might find surprising, because any later destruction of the
moved-from object will not call the derived destructor implementation. However so

long as the destructor of derived classes has no side effects when called on a moved-
from instance of itself, the overall outcome remains safe, and within programmer
expectations. — end note]

5. If a type T’s move constructor has been defaulted to = bitcopies, the compiler will imple-

ment the move constructor with an as-if memcpy (&dest, &src, sizeof(T)), followed by as-if
memcpy (&src, &T{}, sizeof(T)). Note that by ‘as-if’, we mean that the compiler can fully
optimise the sequence, including the elision of the second memory copy. The destructor is not
ordinarily called on the source object, as the programmer has guaranteed that doing so on a
default constructed instance has no side effects.

. If a type T’s move constructor has = bitcopies compatible semantics (which includes trivial

copyability), the trait std::is move constructor_bitcopying<T> shall be true.

. Finally, the C++ standardese for this proposal would guarantee that move bitcopying types

can pass through code with a C ABI. In other words, it would be defined behaviour for a move
bitcopying type to be passed to an extern "C" function by value, under C2x’s compatible
type rules. If the C ABI function is implemented in C, it would bit copy the value, and having
no knowledge of destructors, it would not call destructors on copied-from instances. It would
be undefined behaviour to send a move bitcopying object into C, and for that object instance
to not eventually return to C+-+.

This may seem superfluous, but it would be a great boon to aid interoperation with other
languages, which speak C. Right now, efficient other-language bindings generally must do lots
of UB to avoid excessive memory copying and dynamic memory allocation for type erasure.
If C++ could legally send a richer subset of C++ object types to C, particularly the use case
of rich C++ types passing through C code e.g. via a C callback function, that would be very
useful in removing the need for much UB in language interop, and enable a much larger subset
of C++ to be directly invocable by C code.

2.1 Worked example, and effect on codegen

Let us take a worked example. Imagine the following partial implementation of unique_ptr:

template<class T>
class unique_ptr

{

T * v{nullptr};

public:
// Has an in-class defined, non-deleted, constexpr default constructor
unique_ptr() = default;

constexpr explicit unique_ptr(T *v) : _v(v) {}

unique_ptr(const unique_ptr &) = delete;
unique_ptr &operator=(const unique_ptr &) = delete;

unique_ptr(unique_ptr &&) = bitcopies;
unique_ptr &operator=(unique_ptr &&0) noexcept

{

delete _v;
_V = 0._V;
0._v = nullptr;
return xthis;
}
~unique_ptr()
{
delete _v; // No side effects when _v == nullptr
_v = nullptr;
}

T &operatorx() noexcept { return *_ v; }

};

The default constructor is not deleted, constexpr and defined in-class, and it sets the single, trivially
copyable, member data v to nullptr. No base classes nor member variables are neither trivially
copyable nor move relocating, so the application of = bitcopies does not cause a compile time
diagnostic.

The destructor, when called on a default constructed instance, will be reduced by the optimiser
to a trivial destructor (operator delete does nothing when fed a null pointer, and setting a null
pointer to a null pointer leaves the object with exactly the same memory representation as a default
constructed instance).

We shall compile this small program and see how it looks before and after the attribute has been
applied:

extern unique_ptr<int> attribute__((noinline)) boo()

{

return unique_ptr<int>(new int);

}

extern unique_ptr<int> __attribute__((noinline)) foo()

{
auto a = boo();
*a += xboo();
return a;

}

int main()

{
auto a = foo();
return 0;

}

2.1.1 With current compilers, without = bitcopies:

On current C++ compilers?, the program will generate the following x64 assembler:

boo():

3GCC 8 with -02 on.

AW =

20

[I N

push rbx

mov rbx, rdi

mov edi, 4

call operator new(unsigned long)
mov QWORD PTR [rbx], rax

mov rax, rbx

pop rbx

ret

As unique ptr is not a trivially copyable type, the compiler is forced to use stack storage to return
the unique ptr. The caller passes in where it wants the return stored in rdi, which is saved into rbx.
It allocates four bytes (edi) for the int using operator new, and places the pointer to the allocated
memory into the eight bytes pointed to by rbx. It returns the pointer to the pointer to the allocated
int via rax.

foo():
push rbp
push rbx
mov rbx, rdi
sub rsp, 24
call boo()
lea rdi, [rsp+8]
call boo()
mov rdi, QWORD PTR [rsp+8]
mov rax, QWORD PTR [rbx]
mov esi, 4
mov edx, DWORD PTR [rdi]
add DWORD PTR [rax], edx
call operator delete(void*, unsigned long)

add rsp, 24

mov rax, rbx

pop rbx

pop rbp

ret

mov rbp, rax

jmp .L5
foo() [clone .cold.1l]:
.L5:

mov rdi, QWORD PTR [rbx]

mov esi, 4

call operator delete(void*, unsigned long)
mov rdi, rbp
call _Unwind_Resume

We firstly allocate 24 bytes on the stack frame (rsp) for the two unique ptrs, calling boo() twice
to fill each in. We load the two pointers to the two int’s from the two unique ptrs (rdi, rax),
dereference that into the allocated int for one (edx) and add it directly to the memory pointed to
by rax. We call operator delete on the added-from unique ptr, returning the added-to unique ptr.
main:

sub rsp, 24

lea rdi, [rsp+8]

call foo()

mov rdi, QWORD PTR [rsp+8]
mov esi, 4

AW =

LS

~

call operator delete(void*, unsigned long)
Xor eax, eax

add rsp, 24

ret

After reserving space for the returned unique ptr filled in by calling foo(), main() loads the pointer
to the allocated memory returned by foo(), and calls operator delete on it. This is unique ptr’s
destructor correctly firing on destruction of the unique ptr.

2.1.2 With the proposed = bitcopies:

Now let us look at the x64 assembler which would be generated instead if this proposal were in
place:

boo():
mov edi, 4
jmp operator new(unsigned long) # TAILCALL

The compiler now knows that unique ptrs can be stored in registers because moves relocate. Knowing
this, it optimises out entirely the use of stack to transfer instances of unique ptrs, and thus simply
returns in rax a naked pointer to a four byte allocation for the int. In other words, the unique ptr
implementation is entirely eliminated, just its data member an int* remains!

foo():
push rbx
call boo()
mov rbx, rax
call boo()
mov esi, 4
mov edx, DWORD PTR [rax]
add DWORD PTR [rbx], edx
mov rdi, rax
call operator delete(void*, unsigned long)
mov rax, rbx
pop rbx
ret

foo() has become rather simpler, too. boo() returns the allocated int directly in rax, so now the
compiler can simply dereference one of them once, add it to the memory pointed to by the other.
No more double dereferencing!

The first unique ptr is destructed, and we return the second unique ptr in rax.

main:
call foo()
mov esi, 4

mov rdi, rax

call operator delete(void*, unsigned long)
XOr eax, eax

ret

main() has become almost trivially simple. We call foo(), and delete the pointer it returns before
returning zero from main().

2.1.3 How do you know that the code in the second example is feasibly generatable
by a compiler?

The second example is not hand written. I actually created two unique ptr implementations,
one trivially copyable and one the above, and used forced casting to introduce trivially copyable
semantics at the correct points. The code you see above was actually generated by a mixture of
clang trunk and GCC trunk, using those forced type castings to mimic the proposed semantics.

Upon reviewing this paper, Richard Smith suggested that applying the [[clang::trivial abi]]
attribute might result in similar elision of unique_ptr. This was tested and found to be true.

2.2 So what?

Those of you who are used to counting assembler opcode latency will immediately see that the
second edition is many times faster than the first edition because it depends on memory much less.
Even though reads and writes to the stack are probably L1 cache fast, any read or write to memory
is far slower than CPU registers, typically a maximum of one operation per cycle with a latency of
as much as three cycles. CPU registers typically can issue four operations per cycle, with between
a zero and one cycle latency. If you add up the CPU cycles in the two examples above, excluding
operators new and delete, you will find the second example is several times faster with a fully
warmed L1 cache.

What is hard to describe to the uninitiated is how well this microoptimisation aggregates over a
whole program. If you make all the types in your program trivially copyable, you will see across
the board performance improvements with especial gain in performance consistency.

This is why SG14, the low latency study group, would really like for WG21 to standardise relocation
so a greater range of types can be brought under maximum optimisation, including [P0709| Zero-
overhead deterministic exceptions: Throwing values and [P1031| Low level file i/o library, both of
which would make great use of move relocates.

3 Design decisions, guidelines and rationale

Previous work in this area has tended towards the complex. This proposal proposes the barest of
essentials for a limited subset of address relocatable types in the hope that the committee will be
able to get this passed.

4 Technical specifications

No Technical Specifications are involved in this proposal.

5 Acknowledgements

Thanks to Richard Smith for his extensive thoughts on the feasibility, and best formulation, of this
proposal.

Thanks to Arthur O’Dwyer for his feedback from his alternative relocatable proposal.

Thanks to Nicol Bolas for quite extensive feedback and commentary, and to Alberto Barbati for
feedback helping me reduce the size of the proposal still further.

6 References

[PO709] Herb Sutter,
Zero-overhead deterministic exceptions: Throwing values
https://wg21.1link/P0709

[P0784] Dionne, Smith, Ranns and Vandevoorde,
Standard containers and constexpr
https://wg21.1ink/P0784

[P1028] Douglas, Niall
SG14 status_code and standard error object for PO7T09 Zero-overhead deterministic exceptions
https://wg21.1link/P1028

[P1031] Douglas, Niall
Low level file i/o library
https://wg21l.1link/P1031

10

https://wg21.link/P0709
https://wg21.link/P0784
https://wg21.link/P1028
https://wg21.link/P1031

	Introduction
	Proposed Design
	Worked example, and effect on codegen
	With current compilers, without = bitcopies:
	With the proposed = bitcopies:
	How do you know that the code in the second example is feasibly generatable by a compiler?

	So what?

	Design decisions, guidelines and rationale
	Technical specifications
	Acknowledgements
	References

