
P1112R4

EWG

2023-05-18

Reply-to: Balog, Pal (pasa@lib.hu)

Target: C++26

Language support for class layout controlLanguage support for class layout controlLanguage support for class layout controlLanguage support for class layout control

AbstractAbstractAbstractAbstract

The current rules on how layout is created uses rules inherited from pre-C era. Forcing an incremental order

that is not  a utility outside cases where standard layout is desired.  In modern language usage it's often not

applicable in the application at all, or if it is, limited to a small subset of classes.  But for the rest a layout is

forced that potentially wastes memory and CPU cycles. Paying for what is not uses is not in the spirit of

C++ design.

This proposal attempts to remedy this situation with an opt-in syntax that express the intent explicitly so the

implementation can provide better fitting solution. And where the standard layout is desired it can be

invoked as the strategy making it well visible rather than "just happen" by matching a long list of arcane

rules.  And with this opt-in some additionally previously excluded cases could fit in too.

The effect of this facility is only that members appear at a different offset in the memory, for all

other purposes, like the initialization order, nothing changes!

(pre-EWG revision and discussion history moved to the end of this paper.)

MotivationMotivationMotivationMotivation

This proposal is inspired by [Language support for empty objects] (http://wg21.link/P0840) that allowed to

turn off a layout-creating rule that requires distinct address for all members, including those taking up zero

space. Causing wasted performance when the user never looks at member offsets.

We have another rule preventing optimal layout: 7.6.9 [expr.rel] "(4.2) — If two pointers point to different

non-static data members of the same object, or to subobjects of such members, recursively, the pointer to

the later declared member is required to compare greater provided the two members have the same access

control (11.9), neither member is a subobject of zero size, and their class is not a union. "  Repeated in  p19

of [class.mem], that recently got turned into a note to avoid redundancy. (ORDERRULE)  In practice that

results in plenty of padding when the class has members of different size and alignment.  That could be

reduced if reordering the members was allowed.

The programmer could start fiddling with the order to address this problem, but that has significant fallout.

Pre-C++23 the result was not even mandated unless all members were private or public. Now that is no

longer a problem, but the declaration order influences not just the layout but the construction order too.

What changes the semantic of the program.  Possibly introducing a bug. And likely triggering warnings to

also change the constructors following old guidelines.  And it messes up readability bigtime.  Normally we

want related data members appear in groups.  And the order follows the features and semantics.

So such reordering is not desired even if we know all the sizes to reduce the waste.  But the size is changing

even for classes fully in our control. Never mind content of std:: and external things.  And any change

triggers a whole cascade.    And those so determined to go with the swaps anyway will then enjoy crippled

git history. Dragging crippled reviews with all fallout of that.



We use C++ as a high level language. The data members are used for what they do and we almost never

care where they happen to sit in the memory. If I have 7 doubles and 8 bools that can properly fit and work

in a 64 byte frame, it's baffling to see that instead 72 -- or even 120 bytes could be used. Doing the same

task, just much slower and consuming more memory.

Most often we just swallow this waste as using the programmer's time and brain cycles is needed

elsewhere.  And this all could be solved if we could just opt out of ORDERRULE and let the compiler just

give us the best thing.

We have some hard evidence that this feature is wanted. In https://herbsutter.com/2019/07/25/survey-

results-your-top-five-iso-c-feature-proposals/ this paper got into top 50 with 7 votes.   One of those is

mine, but the other six was born in the most natural way, I did not mention the poll to anyone.

ProposalProposalProposalProposal

We propose the addition of an "attribute",  layout(strategy) that can be applied to a class definition

and indicates that the programmer wants to cancel ORDERRULE and orders the layout created in a certain

way indicated by strategy.  In the fist version of the paper we meant the attribute literally, with the [[]], but

in the meantime decided to go with its broader sense, like alignas that is specified in [decl.attr] section of

the standard, but is not ignorable and have semantics. (If the text of this paper refers to the facility as "this

attribute", it's means just as a self-reference.)

The invocation syntax is open to bikeshedding and can be reworked later. The most recent idea is to use

layout as a context-dependent keyword with () that appears between struct/class and the name, just as

alignas or the [[]] attributes.  Inside the () further syntax defines the strategy and its related arguments.

This paper wants to establish a framework. With just a small number of initial strategies (possibly just one).

Opening the door for easy further extensions to add more strategies for specific needs. That provide good

utility even just as vendor-specific extension, but later can be standardized from existing practice/use

experience.

The names and composition of the initial strategies are up to bikeshedding. Here is the outline, more details

follow in a later section.

layout(smallest) wants the members reordered to minimize the memory footprint.

layout(standard) ensures that the struct is standard-layout (in more convenient way that appending a

static_assert) and aims to extend standard-layout-ness to some additional cases.

layout(explicit) is an implementation-defined strategy, that is allowed to do nothing or mirror smallest, but

could cover profile-based optimization and user-defined layouts be injected from an external source.

We thought about many other sensible strategies that are not proposed in this paper until positive feedback

or usage experience (see later). Special highlight would be the strategy that could invoke a consteval

function that takes the "raw" layout and returns it with potential modification of the offsets. If we already

had reflection in the standard, most cases could be covered in library, instead of the compiler core.

Es mentioned already, we see much desire in this area and a major aim is to put the framework itself in

place, so further papers have easier time and need only to fiddle with the payload.

The names and composition of the included strategies are also open to bikeshedding.



ExamplesExamplesExamplesExamples

// hand-optimized to save space!

// sorry for the mess

// please remember to re-work if add

// or change a member

struct Dog {

    std::string name;

    std::string bered;

    std::string owner;

    int age;

    bool sex_male;

    bool can_bark;

    bool bark_extra_deep;

    double weight;

    double bark_freq;

};

struct layout(smallest) Dog {

    std::string name;

    std::string bered;

    int age;

    bool sex_male;

    double weight;

    std::string owner;

    bool can_bark;

    double bark_freq;

    bool bark_extra_deep;

};

// same with layout(smallest), but reads

layout recipe from outside instead of using

algorytm

struct cell {

    int idx;

    double fortran_input;

    double fortran_output;

};

static_assert(std::is_standard_layout_v<

cell >);

struct layout(standard) cell {

    int idx;

    double fortran_input;

    double fortran_output;

};

// trick to simulate extension

#define CELL_MEMBERS \

    int idx; \

    double fortran_input; \

    double fortran_output;

struct cell {

   CELL_MEMBERS

};

static_assert(std::is_standard_layout_v<

cell >);

struct cell_ex {

    CELL_MEMBERS

    int extra_info;

};

static_assert(std::is_standard_layout_v<

cell_ex>);

struct layout(standard) cell {

    int idx;

    double fortran_input;

    double fortran_output;

};

struct layout(standard) cell_ex : cell {

   int extra_info;

};

// now works naturally and IS standard-

layout too; identical to left



Interaction with the rest of the languageInteraction with the rest of the languageInteraction with the rest of the languageInteraction with the rest of the language

The most important clash is with standard layout.  Unfortunately the attempt to sort it out in spin-off failed,

so we have to cover it here individually.    We propose the easiest approach: by default the presence of the

attribute makes the class not standard layout. (Including when e.g. it was, and we asked smallest that did

not alter the offsets.)    This is augmented by the strategy itself, that can order otherwise. In the current state

the layout(standard) makes it so.

We want to take care to not break any core constants.   sizeof supposed to work and remain stable.  And

offsetof, where supported.   Those do change values compared to the "initial" layout candidate created

before executing the strategy, but that would not be observed in any way.  Those require a complete type.

The strategy is inserted as a new last step as the class becomes complete.

Why language support is required?Why language support is required?Why language support is required?Why language support is required?

Currently we have just one tool to get the best layout: arranging the members in the desired order. That

brings in several problems:

 - the source will be (way) less readable, the natural thing is to have members arranged by program logic

 - the programmer must know the size and alignment of members; including 3rd party and std:: classes (that

is next to impossible)

 - if some member changed its content, what contains it needs rearrangement (recursively)

 - such manual adjustment itself triggers need to rearrange the subsequent classes

 - if the source targets several platforms, each may need a different order to be optimal

on top of that, manual rearrangement would cause:

 - change in the order of initialization of members

   -- likely trigger warnings on initializer lists

   -- possibly breaking the code if it depended on the order

 - need adjusting brace-init lists

 - need adjusting structured bindings

What makes the effort extremely infeasible in practice. We can ask the compiler to warn about padding or

even dump the realized layout, but then many iterations are needed. And the work redone on a slight

change. And we sacrificed much of readability and portability.

Therefore, in practice we mostly just ignore the layout and live with the waste as cost of using the high-

level language. Against the design principles of C++. And this is really painful considering that cases

where we use the address of members for anything is really rare. And that the compiler has all the info at

hand when it is creating the layout to do the meaningful thing, just it is not allowed.

Details of the proposed strategiesDetails of the proposed strategiesDetails of the proposed strategiesDetails of the proposed strategies

layout(smallest): [bikeshed names smallest, small, compact, minsize, size ...]

Aim is minimal memory usage.  With one tweak: if we have a base class at 0 offset, it remains there.

EWGI voted  to prefer that over strict smallest that could move this too. Even despite potential name

discrepancy.  Experience shows that programmers expect single inheritance make base and derived be

reinterpret_cast compatible even if it's not guaranteed. Beyond avoiding surprise and critical bug potential

if the base class is moved, the well-formed implicit/static casts will need instructions to adjust the offset.

What may be more of a performance drain than the gain from the rearrange.



An algorithm like sorting members by alignment(desc) and declorder + hoisting applicable items into the

base classes tail padding will be specified. It can be made stable.

layout(standard):

The class will be standard-layout or the program is ill-formed. If the class is already so by the current rules,

nothing happens.  Else, look for special case that could be made into standard layout.

If the class has exactly one base class, create a rewrite where this base class is removed and injected as the

first member. Check if this complies as standard-layout. If so, accept this as the layout. All the facilities

work as if we had this rewrite.  (The pointer-convertibility between the whole and first member applies to

the base; offsetof figures the actual and usable offset.)

This will be a challenge to specify in standardese, but less tricky than the last extension with the empty

bases. And it does not really change anything of substance.

I found the need for this use case in almost all projects that were interested in standard_layout, and while

the workaround exists, it's far from nice.  Getting rid of one more legit use of preprocessor should count

progress.

layout(explicit): [bikeshed: pbo impdef  ... ]

invokes an implementation-defined strategy. That allows to do nothing, but the recommended practice is to

allow injecting layout information from an external source (file, database).  On encountering, the class

identifier is looked up in the file and if found, the layout defined there is used (if passed sanity checks).

The file content can be filled by the implementation's optimizer, external tools or the user directly.

Compilers already have switch to dump all class layouts as a text file.  It just needs a format spec to be

usable (json, xml+xsd).  one tricky element is the unnamed namespaces, but a mapping based on source

path can be figured.  The other content is hardly rocket science.

The utility of this could be enormous as not just factory tools could be used to optimize, but the user could

simply generate layout candidates with a python script and run benchmarks with minimal effort.

And there is no concern about stability.

It could even be used to mitigate ABI transition problems!

Other considered strategies (not proposed now)Other considered strategies (not proposed now)Other considered strategies (not proposed now)Other considered strategies (not proposed now)

"eval(func)" hand the layout to a consteval function that will patch up the offsets and return it for use.  The

user can just write his own strategy or invoke std::/third party ones. Requires reflection.

"ABI(XXX)" replicate layout rules of FORTRAN, python, VS2012, C++98 or whatever external entity

indicated by the keyword

"pack(N)"  would invoke the effect of #pragma pack(N) finally bring this omnipresent facility in the

standard.  Not included because this proposal aims only at reordering members, not interacting with

alignment.

"alpha(N)" sort by the name (or first N letters) combined with smallest where it is tied.  This would allow

creation of groups of members to keep together (for locality) or apart (to avoid false sharing).  This allows

easy experimentation with reordering by just altering a prefix.  Probably obsolete if "explicit" is

implemented in the desired way, as then the source can be left alone and the external recipe altered.

"strict_smallest" allow moving every base class to have the actually smallest footprint



"pubprotpriv" place public, then protected then private members in their declaration order (as currently

implemented by EDG invocable by configuration)

"best" was in the original proposal to allow unspecified or implementation-defined magic to allow whatever

goes. EWGI didn't like it for inherent ABI instability, between compiler versions, potentially even between

compilations.  Salvaging it as "pbo" where we expect that did not fare better.  Now superceded by

"explicit" that handles the stability problem.

"cacheline" a very powerful strategy for speed optimization aiming to set sizeof(T) be a divisor or multiple

of the cacheline size. Not included before gathering experience with implementation and impact, especially

for sizes over the cacheline size. Possibly needs additional tuning parameter, i.e. to control maximum

extension.

Bulk specification (not proposed now)Bulk specification (not proposed now)Bulk specification (not proposed now)Bulk specification (not proposed now)

The programmers who want to use this attribute will likely want it on majority of their classes. So, a simple

form that could add it to many places with little source change would be good. Like with extern "C" that

can be applied to make a {} block that will apply it to all relevant elements inside.

We considered the attribute applicable to the extern "" {} block and namespace {} block with the semantics

that it would be used on any class definition within the block without a layout attribute. Neither felt good

enough.

The implementation could likely add a facility like current #pragma pack along with push and pop, but

pragmas that is not fit for the standard.  Though that is a thing the users would likely welcome.

And obviously the compiler can use configuration (command line args or a file), like it already happens for

EDG.

RisksRisksRisksRisks

This proposal does not create new kind of risk, as impact is similar to [[no_unique_address]]: if we mix

code compiled with versions that implement it differently, the program will not work. (Similar mess can be

created by inconsistent control of alignment through #pragma pack and related default packing control

compiler switches.)   But we add an extra item to those potential problems.    For practice we consider these

problems as an aspect of ODR violation.

In EWGI most concerns were expressed about ABI and general stability. The current paper only proposes

stable strategies.  Certainly an inconsistent compilation could create a problem, but that is a GIGO case.

(See more discussion in the appendix).

Summary of decision pointsSummary of decision pointsSummary of decision pointsSummary of decision points

For first EWG presentation:

 - approve the motivation

 - strategies to include/excude

 - approve general syntax  (one context sensitive keyword at class head, not [[]])

 - approve standard layout approach (nuked ny default)

for later:

- bikeshed the strategy names and syntax nuances



Wording will be created after key elements approved.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

Many thanks to Richard Smith for championing this proposal on initial presentation.

To James Dennett, Daniel J. Garcia and Roger Orr for reviewing the initial draft.

To Jens Maurer for clarification on "attribute" and the related source example.

All folks in the incubator providing feedback.

AppendixAppendixAppendixAppendix

Q&AQ&AQ&AQ&A

Does it change the initialization order of members?Does it change the initialization order of members?Does it change the initialization order of members?Does it change the initialization order of members?

Absolutely not! The only change is the offset of the members within the memory.  Any other semantic is

unchanged. One of the major motivations of this paper is that manual rearrangement changes things that we

want to avoid.

I'd like a discussion of ABI issues this paper can cause, and how users can avoidI'd like a discussion of ABI issues this paper can cause, and how users can avoidI'd like a discussion of ABI issues this paper can cause, and how users can avoidI'd like a discussion of ABI issues this paper can cause, and how users can avoid

them (potentially with tooling help).them (potentially with tooling help).them (potentially with tooling help).them (potentially with tooling help).

The ABI issues are the same as caused by [[no_unique_address]]. And usage of #pragma pack (+

alternatives). The latter is a thing we live together from the beginning of the C language. And the "tooling"

is pretty weak on several major platforms. I.e. one can try to compile with MSVC switch setting the

structure alignment to 1 instead of the default 4/8.  And include <windows.h> and use something.  The

build is clean and the result will crash.  As many structs will have a different layout in the program than in

the system DLLs.  (Because the source uses #pragma pack for control and pack(N) does not increase the

alignment to N if it more than what comes from the switch...)

But tooling is certainly possible if the vendor provides it, i.e. on the same platform different values for

ITERATOR_DEBUG_LEVEL, that cause different content in the standard classes has a chance to get an

alert in linking.

The implementation can emit information on what attribute was used and in what way and internal

identifier for strategy implementation and can check it too. Or an offset table. A related example

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/k334t9xx(v=vs.110)  is

MSVC's warning C4742 that remembers alignment used for structure members.  While the implementation

is not open, the best guess is that the layout table is emitted to the .obj file as comment and is checked. The

very same information can point out discrepancy on the member offsets.    However this method is limited

to cases where linking is involved.   For a DLL+header there is probably no way to discover that the client

compiled the header with incompatible options. (This latter problem is nothing new, just try to build a

WIN32 API application with the "default packing" option set to 1 and enjoy the crash related to system

calls.)

This proposal does create an additional case, as the concrete algorithm even for "smallest" could suffer an

incompatible change.



But the user who starts the project with arranging a solid build system that ensures everything compiled

with same version and flags is protected from these problems too. While doing less is ill-advised. The

libraries that ship as header+binary will probably stick to just the conservative layout control.

    How does the proposal affect bit-field members (including zero-width bit-fields)?    How does the proposal affect bit-field members (including zero-width bit-fields)?    How does the proposal affect bit-field members (including zero-width bit-fields)?    How does the proposal affect bit-field members (including zero-width bit-fields)?

The allocation units created from the original source are preserved verbatim, and those units can be moved

around according to strategy.  The strategy could specify reordering fields too, but the proposed ones

currently leave them as is.

Pre-EWG change historyPre-EWG change historyPre-EWG change historyPre-EWG change history

Changes from R3Changes from R3Changes from R3Changes from R3

Consolidating final EWGI feedback for first EWG presentation.

Consolidating effect of adopting P1847 into C++23 (declaration order is mandated ignoring access control)

Specifying interaction with standard layout.

Strategies: rework 'declorder' strategy to 'standard', 'pbo' strategy to 'explicit' with additional features.

Other strategies: +eval, +ABI

Changes from R2Changes from R2Changes from R2Changes from R2

Change syntax from attribute to contextual keyword

Delete parts that are no longer look relevant or important including attribute discussion, most of FAQ,

wording

Strategies: +pbo, smallest redefined as 0base-preserving

Other strategies:  +strict_smallest, -best, +pubprotpriv, +C++03, +C++17

Changes from R1Changes from R1Changes from R1Changes from R1

Reflect discussion at Cologne meeting.

- "declorder" strategy still discussed as motivation, but it is moved out to P1847 to be the default

- remove "best" strategy

+ refer to Herb's poll on desired papers for C++23

Changes from R0Changes from R0Changes from R0Changes from R0

+ status section

+ wording for bit-fields

+ Q&A to address questions risen on EWGI list

+ example showing visible semantic change from declorder

+ show a possible alternative approach instead of declorder

+ new idea to split "smallest"

Discussion historyDiscussion historyDiscussion historyDiscussion history

R0 presented in EWGI by Richard Smith in San Diego (2018), passed teh motivation poll

R1 was discussed in EWGI in Cologne. Some of the previous decision points got polled. "declorder" is

being pursued in separate paper P1847. Hopefully that passes, then this paper will only provide strategies to

relax the strict ordering.

R2 was discussed in Belfast at SG7 providing good insight on what can be possibly made in the future

using compile-time programming, including even user-provided consteval functions. That will not be

pursued in this paper, but in follow-up after it is adopted. EDG appears to already work to support use cases

similar to ones in this paper. SG7 agrees that the facility is wanted and does not force a consteval-based

approach, so the original one continues.



R2 was also discussed in EWGI and polled several open questions. Most importantly the attribute syntax

lost 0/0/3/2/2 to context-sensitive keyword and the room voted 1/6/0/1/0 to use the 0-base-preserving

version of smallest strategy.

R3 presented in Prague, gained forward to EWG. Directional polls suggest to have only the smallest

strategy at start; research reflection-fbased solution allowing the strategy itself coded as library consteval

function (possibly in follow-up).

Related paper P1848 didn't gain traction so standard-layout related interactions must be embedded in this

paper.  http://wg21.link/P1848

Related paper P1847 got accepted and adopted making the previous 'declorder' strategy obsolete.

http://wg21.link/P1847


