
1

The Concept of Memory Allocator

Document number: P1172R0
Date: 2018-10-03
Project: Programming Language C++
Audience: LEWG, LWG
Authors: Mingxin Wang
Reply-to: Mingxin Wang <wmx16835vv@163.com>

Table of Contents

The Concept of Memory Allocator .. 1
1 Introduction .. 1
2 Technical Specification .. 2

2.1 Requirements for Memory Allocator types .. 2
2.1.1 BasicMemoryAllocator requirements .. 2
2.1.2 MemoryAllocator requirements .. 2

2.2 Class memory_allocator .. 3
3 Known Use Case .. 3

1 Introduction

Runtime memory allocation is a common requirement in C++ projects. This paper proposed a new way to abstract this
concept in order to simplify the code requiring runtime memory allocation, especially in type-erased contexts.

In C++98, the concept of "Allocator" was introduced, and was widely adopted in STL. However, since the concept of
"Allocator" has too many customization points and is type-specific, it becomes difficult to reuse this concept in
type-erased components. For example, the class template std::function used to have a constructor that allow
customized allocator types, just like other STL containers does, but the constructor was eventually removed in C++17
because "the semantics are unclear, and there are technical issues with storing an allocator in a type-erased context and
then recovering that allocator later for any allocations needed during copy assignment" [P0302R1]. With the concept of
"Memory Allocator", it will be much easier to add customization points in type-erased components, like the "PFA" - a
generic, extendable and efficient solution for polymorphic programming [P0957R1].

In C++17, we have the concept of "Memory Resources". However, it is defined with "intrusive polymorphism", and
any implementation of the concept shall be derived from the base class std::pmr::memory_resource with virtual
functions, which will introduce unnecessary runtime space occupation and overhead when the "memory resource" itself
is not required to be polymorphic. Besides, since the size and alignment of the type to allocate are known at compile-time,
it will be better for performance to pass them to the corresponding functions as compile-time constants rather than
runtime variables. Considering usability and performance, not only does the "Memory Allocator" not require the
implementations to be polymorphic themselves, but also allow passing size and alignment with compile-time constants.

Therefore, if the concept of "Memory Allocator" is introduced in the standard, it will become possible for us to

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0957r1.pdf

2

introduce reliable and extendable memory allocation mechanism to type-erased components, including the class template
std::function, the class std::any and the "PFA" [P0957R1].

2 Technical Specification

2.1 Requirements for Memory Allocator types

2.1.1 BasicMemoryAllocator requirements

A type MA meets the BasicMemoryAllocator requirements of specific std::integral_constant of SIZE
and ALIGN if the following expressions are well-formed and have the specified semantics (ma denotes a value of type
MA, s donates a value of std::integral_constant<std::size_t, SIZE>, a donates a value of
std::integral_constant<std::size_t, ALIGN>, p donates the returned value).

ma.allocate(s, a)

Effects: Allocates a continuous block of memory with at least specific size of SIZE and alignment of ALIGN. The
allocated memory will be available until a subsequent corresponding call to ma.deallocate(p, s, a).
Return type: void*
Returns: A pointer pointing to the first byte of the memory being allocated.

ma.deallocate(p, s, a)

Requires: p shall have been returned from a prior call to ma.allocate(s, a), and the storage at p shall not yet
have been deallocated.
Effects: Deallocates the memory pointed by p allocated before.

2.1.2 MemoryAllocator requirements

A type MA meets the MemoryAllocator requirements of specific std::integral_constant of SIZE and
ALIGN if it meets the BasicMemoryAllocator requirements of std::integral_constant of SIZE and
ALIGN, and the following expressions are well-formed and have the specified semantics (ma denotes a value of type MA,
s donates a value of std::integral_constant<std::size_t, SIZE>, a donates a value of
std::integral_constant<std::size_t, ALIGN>, p donates the returned value, n donates the length of the
array of std::size_t).

ma.allocate(n, s, a)

Effects: Allocates a continuous block of memory with at least specific size of (n * SIZE) and alignment of
ALIGN. The allocated memory will be available until a subsequent corresponding call to ma.deallocate(p, n,
s, a).
Return type: void*
Returns: A pointer pointing to the first byte of the memory being allocated.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0957r1.pdf

3

ma.deallocate(p, n, s, a)

Requires: p shall have been returned from a prior call to ma.allocate(n, s, a), and the storage at p shall not
yet have been deallocated.
Effects: Deallocates the memory pointed by p allocated before.

2.2 Class memory_allocator

namespace std {

class memory_allocator {

 public:

 template <size_t SIZE, size_t ALIGN>

 void* allocate(integral_constant<size_t, SIZE>,

 integral_constant<size_t, ALIGN>);

 template <size_t SIZE, size_t ALIGN>

 void deallocate(void* p, integral_constant<size_t, SIZE>,

 integral_constant<size_t, ALIGN>);

 template <size_t SIZE, size_t ALIGN>

 void* allocate(size_t n, integral_constant<size_t, SIZE>,

 integral_constant<size_t, ALIGN>);

 template <size_t SIZE, size_t ALIGN>

 void deallocate(void* p, size_t, integral_constant<size_t, SIZE>,

 integral_constant<size_t, ALIGN>);

};

}

The class memory_allocator meets the MemoryAllocator requirements for any positive std::integral_constant of SIZE
and ALIGN, and is expected to be included in header <memory>.

3 Known Use Case

The BasicMemoryAllocator requirements and the class memory_allocator is used as an experimental
extension for the PFA [P0957R1], and is used in the constructor of the built-in addresser of value semantics.

https://github.com/wmx16835/wang/blob/master/src/main/p1172/memory_allocator.h
https://github.com/wmx16835/wang/blob/master/src/main/p1172/memory_allocator.h
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0957r1.pdf

	The Concept of Memory Allocator
	1 Introduction
	2 Technical Specification
	2.1 Requirements for Memory Allocator types
	2.1.1 BasicMemoryAllocator requirements
	2.1.2 MemoryAllocator requirements

	2.2 Class memory_allocator

	3 Known Use Case

