Document Number: P1252R0

Date: 2018-10-07

Audience: Library Evolution Working Group,
Library Working Group

Author: Casey Carter

Reply to: casey@carter.net

Ranges Design Cleanup

Contents

1 Abstract
1.1 Revision History o e

2 Deprecate move_iterator: :operator->
2.1 Technical Specifications e

3 ref-view => ref_view
3.1 Technical Specifications L

4 Comparison function object untemplates
4.1 Technical specifications e

5 Reversing a reverse_view
5.1 Technical specifications

6 Exposing exposition-only concepts
6.1 Technical specifications

7 Use cases left dangling
7.1 Technical specifications L

Bibliography

ii

1 Abstract lintro]

This paper proposes several small, independent design tweaks to Ranges that came up during LWG review of
P0896 “The One Ranges Proposal” ([2]).

All wording sections herein are relative to the combination of N4762 and PO896R3.

1.1 Revision History [intro.history]
1.1.1 Revision 0 [intro.history.r0]

— In the beginning, all was cv-void. Suddenly, a proposal emerged from the darkness!

2 Deprecate move_iterator: :operator->
[disarm)]

C++17 [iterator.requirements.general] /1 states:

... An iterator i for which the expression (*i).m is well-defined supports the expression i->m
with the same semantics as (*i) .m. ...

Input iterators are required to support the —=> operator ([input.iterators]), and move_iterator is an input
iterator, so move_iterator’s arrow operator must satisfy that requirement, right? Sadly, it does not.

For a move_iterator, *i is an xvalue, so (*i) .m is also an xvalue. i->m, however, is an lvalue. Consequently,
(*i).m and i->m can produce observably different behaviors as subexpressions - they are not substitutable,
as would be expected from a strict reading of “with the same semantics.” The fact that -> cannot be
implemented with “the same semantics” for iterators whose reference type is an rvalue was the primary
motivation for removing the -> requirement from the Ranges iterator concepts. It would benefit users to
deprecate move_iterator’s operator-> in C+420 as an indication that its semantics are not equivalent
and that it will ideally go away some day.

2.1 Technical Specifications [disarm.words]

— Strike move_iterator: :operator-> from the class template synopsis in [move.iterator]:

namespace std {
template<class Iterator>
class move_iterator {

[...]
constexpr iterator_type base() const;
constexpr reference operator*() const;

e6ﬂS%eXpf4P6iﬂ%efgepefa%ﬁf->{94€eﬂ8%i

constexpr move_iterator& operator++();
constexpr decltype(auto) operator++(int);
[...]
}
}

— Relocate the detailed specification of move_iterator: :operator-> from [move.iter.elem]:
constexpr reference operator*() const;
Effects: Equivalent to: return ranges::iter_move(current);

constexpr pointer operator->() const;

Returns: current.

constexpr reference operator[](difference_type n) const;

Effects: Equivalent to: ranges::iter_move(current + n);
to a new subclause “Deprecated move_iterator access” in Annex D:

The following member is declared in addition to those members specified in [move.iterator.elem]:
namespace std {
template<class Iterator>
class move_iterator {
public:
constexpr pointer operator->() const;
I
}

constexpr pointer operator->() const;

Returns: current.

3 ref-view => ref_view [ref]

The authors of P0896 added the exposition-only view type ref-view (PO896R3 [range.view.ref]) to serve as
the return type of view::all ([range.adaptors.all]) when passed an lvalue container. ref-view<T> is an
“identity view adaptor” — an adaptor which produces a view containing all the elements of the underlying range
exactly — of a Range of type T whose representation consists of a T*. A ref-view delegates all operations
through that pointer to the underlying Range.

The LEWG-approved design from P0789R3 “Range Adaptors and Utilities” ([1]) used subrange<iterator_-
t<R>, sentinel_t<R>> as the return type of view: :all(c) for an lvalue c of type R. ref-view and subrange
are both identity view adaptors, so this change has little to no impact on the existing design. Why bother then?
Despite that replacing subrange with ref-view in this case falls under as-if, ref-view has some advantages.

Firstly, a smaller representation: ref-view is a single pointer, whereas subrange is an iterator plus a sentinel,
and sometimes a size. View compositions store many views produced by view::all, and many of those are
views of lvalue containers in typical usage.

Second, and more significantly, ref-view is future-proof. ref-view retains the exact type of the underlying
Range, whereas subrange erases down to the Range’s iterator and sentinel type. ref-view can therefore easily
model any and all concepts that the underlying range models simply by implementing any required expressions
via delegating to the actual underlying range, but subrange must store somewhere in its representation any
properties of the underlying range needed to model a concept which it cannot retrieve from an iterator and
sentinel. For example, subrange must store a size to model SizedRange when the underlying range is sized
but does not have an iterator and sentinel that model SizedSentinel. If we discover in the future that it is
desirable to have the View returned by view::all(container) model additional concepts, we will likely be
blocked by ABI concerns with subrange whereas ref-view can simply add more member functions and leave
its representation unchanged.

We've already realized these advantages for view composition by adding ref-view as an exposition-only View

type returned by view::all, but users may like to use it as well as a sort of "Ranges reference_wrapper".

3.1 Technical Specifications [ref.words]
— Update references to the name ref-view to ref_view in [range.adaptors.all]/2:

The name view: :all denotes a range adaptor object ([range.adaptor.object]). The expression
view: :all(E) for some subexpression E is expression-equivalent to:

— DECAY_COPY(E) if the decayed type of E models View.
— Otherwise, ref-véew{Erref view{E} if that expression is well-formed;—~where-ref-view

— Otherwise, subrange{E} if that expression is well-formed.
— Otherwise, view: :al1(E) is ill-formed.

(2.1) — Retitle [ref.view] to “class template ref_view” and modify as follows:

namespace std::ranges {
template<Range R>
requires std::is_object_v<R>
class ef—viewref view : public view_interface<eef—viewref_view<R>> {
private:
R* r_ = nullptr; // exposition only
public:
constexpr ref—viewref_view() noexcept = default;
constexpr ref—viewref_view(R& r) noexcept;

constexpr R& base() const;

constexpr iterator_t<R> begin() const
noexcept (noexcept (ranges: :begin(*r_)));

constexpr sentinel_t<R> end() const
noexcept (noexcept (ranges: :end(*r_)));

constexpr bool empty() const
noexcept (noexcept (ranges: :empty(*r_)))
requires requires { ranges::empty(*r_); };

constexpr auto size() const
noexcept (noexcept (ranges: :size(*r_)))
requires SizedRange<R>;

constexpr auto data() const
noexcept (noexcept (ranges: :data(*r_)))
requires ContiguousRange<R>;

friend constexpr iterator_t<R> begin(wef—viewref view&& r)
noexcept (noexcept (r.begin()));
friend constexpr sentinel_t<R> end(ref—viewref view&k& r)
noexcept (noexcept(r.end()));
};
}

(2.2) — Similarly change the class template name in the detailed specification of the operations in [range.view.ref.ops]:

constexpr ref—viewref_view(R& r) noexcept;
1 Effects: Initializes r_ with addressof (r).

constexpr R& base() const;

2 Effects: Equivalent to: return *r_;

constexpr iterator_t<R> begin() const
noexcept (noexcept (ranges: :begin(*r_)));
friend constexpr iterator_t<R> begin(ref—viewref view&& r)
noexcept (noexcept (r.begin()));
3 Effects: Equivalent to: return ranges: :begin(*r_); or return r.begin() ;, respec-
tively.

constexpr sentinel_t<R> end() const
noexcept (noexcept (ranges: :end(*r_)));

friend constexpr sentinel_t<R> end(+ef—viewref view&& r)
noexcept (noexcept(r.end()));

4 Effects: Equivalent to: return ranges::end(*r_); or return r.end() ;, respectively.

constexpr bool empty() const
noexcept (noexcept (ranges: :empty(*r_)))
requires requires { ranges::empty(xr_); };

5 Effects: Equivalent to: return ranges: :empty(*r_);

constexpr auto size() const
noexcept (noexcept (ranges: :size(*r_)))
requires SizedRange<R>;

Effects: Equivalent to: return ranges::size(*r_);

constexpr auto data() const
noexcept (noexcept (ranges: :data(*r_)))
requires ContiguousRange<R>;

Effects: Equivalent to: return ranges::data(*r_);

4 Comparison function object untemplates
[untemp]

During LWG review of P0896’s comparison function objects (PO896R3 [range.comparisons]|) we were asked,
“Why are we propagating the design of the std comparison function objects, i.e. class templates that you
shouldn’t specialize because they cannot be specialized consistently with the void specializations that you
actually should be using?” For the Ranges TS, it was a design goal to minimize differences between std
and ranges to ease transition and experimentation. For the Standard, our goal should not be to minimize
differences but to produce the best design. (As was evidenced by the LEWG poll in Rapperswil suggesting
that we should not be afraid to diverge std and ranges components when there are reasons to do so.)

Absent a good reason to mimic the std comparison function objects exactly, we propose un-template-ing
the std: :ranges comparion function objects, leaving only concrete classes with the same behavior as the
prior void specializations.

4.1 Technical specifications [untemp.words]
In [functional.syn], modify the declarations of the comparison function objects as follows:

[...]

namespace ranges {
// [range.comparisons], comparisons

template<eclass—T—=—void>

template<> struct equal_to<wveid>;
template<> struct not_equal_to<veid>;
template<> struct greater<void>;
template<> struct less<void>;

template<> struct greater_equal<void>;
templtate<> struct less_equal<void>;
}

[...]
Update the specifications in [range.comparisons] as well:

There is an implementation-defined strict total ordering over all pointer values of a given type. This total
ordering is consistent with the partial order imposed by the builtin operators <, >, <=, and >=.

template<class T = void>

requires EqualityComparable<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, ==, const T&)
struct equal_to {

constexpr bool operator() (const T& x, const T& y) const;

};

operator () has effects equivalent to: return ranges::equal_to<>{}(x, y);

template<class T = void>

requires EqualityComparable<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, ==, const T&)
struct not_equal_to {

constexpr bool operator() (const T& x, const T& y) const;

}s

operator () has effects equivalent to: return !ranges::equal_to<>{}(x, y);

template<class T = void>

requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)
struct greater {

constexpr bool operator() (const T& x, const T& y) const;

};

operator () has effects equivalent to: return ranges::less<>{}(y, x);

template<class T = void>
requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)
struct less {
constexpr bool operator() (const T& x, const T& y) const;
I
operator () has effects equivalent to: return ranges::less<>{}(x, y);

template<class T = void>

requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)
struct greater_equal {

constexpr bool operator() (const T& x, const T& y) const;

};

operator () has effects equivalent to: return !ranges::less<>{}(x, y);

template<class T = void>

requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)
struct less_equal {

constexpr bool operator() (const T& x, const T& y) const;

};

operator () has effects equivalent to: return !ranges::less<>{}(y, x);

template<> struct equal_to<veid> {
template<class T, class U>

requires EqualityComparableWith<T, U> || BUILTIN_PTR_CMP(T, ==, U)
constexpr bool operator() (T&& t, U&& u) const;

using is_transparent = unspecified;
};
Ezxpects: If the expression std: :forward<T>(t) == std::forward<U>(u) results in a call to a built-in
operator == comparing pointers of type P, the conversion sequences from both T and U to P shall be
equality-preserving ([concepts.equality]).

10 Effects:

(10.1) — If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in
operator == comparing pointers of type P: returns false if either (the converted value of) t
precedes u or u precedes t in the implementation-defined strict total order over pointers of type P
and otherwise true.

(10.2) — Otherwise, equivalent to: return std::forward<T>(t) == std::forward<U>(u);

template<> struct not_equal_to<wveid> {
template<class T, class U>
requires EqualityComparableWith<T, U> || BUILTIN_PTR_CMP(T, ==, U)
constexpr bool operator() (T&& t, U&& u) const;

using is_transparent = unspecified;

};
1 operator () has effects equivalent to:

return !ranges::equal_to<>{}(std::forward<T>(t), std::forward<U>(u));

template<> struct greater<void> {
template<class T, class U>
requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(U, <, T)
constexpr bool operator() (T&& t, U&& u) const;

using is_transparent = unspecified;

};
12 operator () has effects equivalent to:

return ranges::less<>{}(std::forward<U>(u), std::forward<T>(t));

template<> struct less<veid> {

template<class T, class U>
requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(T, <, U)
constexpr bool operator() (T&% t, U&& u) const;

using is_transparent = unspecified;
};

13 FEzxpects: If the expression std: :forward<T>(t) < std::forward<U>(u) results in a call to a built-in
operator < comparing pointers of type P, the conversion sequences from both T and U to P shall be
equality-preserving ([concepts.equality]). For any expressions ET and EU such that decltype ((ET)) is T
and decltype ((EU)) is U, exactly one of ranges: :less<>{}(ET, EU), ranges::less<>{}(EU, ET),
or ranges: :equal_to<>{}(ET, EU) shall be true.

14 Effects:

(14.1) — If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in
operator < comparing pointers of type P: returns true if (the converted value of) t precedes u in
the implementation-defined strict total order over pointers of type P and otherwise false.

(14.2) — Otherwise, equivalent to: return std::forward<T>(t) < std::forward<U>(u);

template<> struct greater_equal<veid> {
template<class T, class U>
requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(T, <, U)
constexpr bool operator() (T&% t, U&& u) const;

using is_transparent = unspecified;
};
15 operator () has effects equivalent to:
return !ranges::less<>{}(std::forward<T>(t), std::forward<U>(u));
template<> struct less_equal<weid> {
template<class T, class U>

requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(U, <, T)
constexpr bool operator() (T&& t, U&& u) const;

using is_transparent = unspecified;

};
operator () has effects equivalent to:
return !ranges::less<>{}(std::forward<U>(u), std::forward<T>(t));

Strip <> from occurrences of ranges::equal_to<>, ranges::less<>, etc. in: [defns.projection], [itera-

tor.synopsis|, [commonalgoreq.general]/2, [commonalgoreq.mergeable], [commonalgoreq.sortable], [range.syn],
[range.adaptors.split_ view], [algorithm.syn], [alg.find], [alg.find.end], [alg.find.first.of], [alg.adjacent.find],

[alg.count], [alg.mismatch], [alg.equal], [alg.is_permutation], [alg.search], [alg.replace], [alg.remove], [alg.unique],

[sort], [stable.sort], [partial.sort], [partial.sort.copy], [is.sorted], [alg.nth.element], [lower.bound], [upper.bound],

[equal.range], [binary.search], [alg.merge], [includes], [set.union], [set.intersection], [set.difference], [set.symmetric.difference],
[push.heap], [pop.heap]|, [make.heap], [sort.heap], [is.heap], [alg.min.max], [alg.lex.comparison|, and [alg.permutation.generator

5 Reversing a reverse_view [weiv__esrever]

view: :reverse in P0896 is a range adaptor that produces a reverse_view which presents the elements of the
underlying range in reverse order - from back to front. reverse_view does so via the expedient mechanism of
adapting the underlying view’s iterators with std: :reverse_iterator. Reversing a reverse_view produces
a view of the elements of the original range in their original order. While this behavior is correct, it is likely
to exhibit poor performance.

We propose that the effect of view: :reverse(r) when r is an instance of reverse_view should be to simply
return the underlying view directly. This behavior is both simple to specify and efficient to implement (see
cmestl2/compare /reverse reverse).

5.1 Technical specifications [sdrow.weiv__esrever]

— Modify the specification of view: :reverse in [range.adaptors.reverse] as follows:

The name view: :reverse denotes a range adaptor object ([range.adaptor.object]). The ex-
pression view: :reverse (E) for some subexpression E is expression-equivalent to: reverse—view{E}r

— If the type of E is a cv-qualified specialization of reverse_view, E.base().

— Otherwise, reverse_view{E}.

6 Exposing exposition-only concepts [expo]

P0896 [specialized.algorithms| provides "rangified" versions of the specialized memory algorithms uninitialized_-
copy et al. The algorithms are constrained using a family of concepts that refine iterator, sentinel, or range
concepts by forbidding some of the required operations to emit exceptions. LWG reviewers were displeased
that these concepts are all exposition-only, instead of making them available to users who want to write their
own raw memory algorithms.

Aside: There is general uneasiness among LWG reviewers with the amount of exposition-only machinery
in P0896. We explained that this is a natural consequence of the addition of Concepts to the language. In
C++17 we might have exhaustively repeated the same set of requirements in Requires elements for several
library functions, but in C+4-20 it’s “easy” to define a concept as a handle to that set of requirements and
use the concept to directly constrain the several library functions. Obviously not every set of requirements is
generally useful and fully-designed to the point that it should be exported to users with a public name, so we
end up with exposition-only concepts. LEWG should expect pushback in the future against designs with
substantial exposition-only machinery and questions about whether or not consideration has been given to
exporting that machinery.

This paper proposes that LEWG reconsider making the concepts in P0896 [special.mem.concepts] exposition
only, and provides wording to export those concepts.

https://github.com/CaseyCarter/cmcstl2/compare/reverse_reverse

6.1 Technical specifications [expo.words]

Modify [memory.syn] as follows:

// [specialized.algorithms], specialized algorithms
// [special.mem.concepts], special memory concepts
template<class I>

concept mo—throw—snput—iteratorNoThrowlnputlterator = see below; //—ezposition—onty

template<class I>

concept mo—throw—forward—iteratorNoThrowForvardIterator = see below; //—ezposition—onty

template<class S, class I>
concept mo—throw—sentinetNoThrowSentinel = see below; //—ezposttion—onty

template<class R>

concept mo—throw—snput—rangeloThrowInputRange = see below; //—ezposition—onty

template<class R>

concept mo—throw—forward—rengeNoThrowForwardRange = see below; //—ezposition—onty

template<class T>
constexpr T* addressof(T& r) noexcept;

namespace ranges {
template<no—throw—forward—tteratorNoThrowForwardIterator I,
no—throw—sentinetNoThrowSentinel<I> S>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_default_construct(I first, S last);
template<ro—throw—forward—rangeNoThrowForwardRange R>
requires DefaultConstructible<iter_value_t<iterator_t<R>>>
safe_iterator_t<R> uninitialized_default_construct (R&& r);

template<ro-throw—forward—tteratorNoThrowForwvardIterator I>

requires DefaultConstructible<iter_value_t<I>>
I uninitialized_default_construct_n(I first, iter_difference_t<I> n);

namespace ranges {
template<no—throw—forward—tteratorNoThrowForwardIterator I,
no—threw—sentinetNoThrowSentinel<I> S>
requires DefaultConstructible<iter_value_t<I>>
I uninitialized_value_construct(I first, S last);
template<ro-throw—forward—rangelNoThrowForwardRange R>
requires DefaultConstructible<iter_value_t<iterator_t<R>>>
safe_iterator_t<R> uninitialized_value_construct(R&& r);

template<no—throw—forward—tteratorNoThrowForwardIterator I>

requires DefaultConstructible<iter_value_t<I>>
I uninitialized_value_construct_n(I first, iter_difference_t<I> n);

namespace ranges {
[...]
template<InputIterator I, Sentinel<I> S1,
no—throw—forward—tteratorNoThrowForwardIterator O,
no—threw—sentinetNoThrowSentinel<0> S2>
requires Constructible<iter_value_t<0>, iter_reference_t<I>>

uninitialized_copy_result<I, 0>
uninitialized_copy(I ifirst, S1 ilast, 0 ofirst, S2 olast);
template<InputRange IR, wo—-throw—forward-rengeloThrowForwardRange OR>
requires Constructible<iter_value_t<iterator_t<OR>>, iter_reference_t<iterator_t<IR>>>
uninitialized_copy_result<safe_iterator_t<IR>, safe_iterator_t<OR>>
uninitialized_copy (IR&& ir, OR&& or);

template<class I, class 0>
using uninitialized_copy_n_result = uninitialized_copy_result<I, 0>;
template<Inputlterator I, wme—throw—feorward—iteratorNoThrowForwardIterator O,
no—throw—sentinetNoThrowSentinel<0> S>
requires Constructible<iter_value_t<0>, iter_reference_t<I>>
uninitialized_copy_n_result<I, 0>
uninitialized_copy_n(I ifirst, iter_difference_t<I> n, 0 ofirst, S olast);

namespace ranges {
template<class I, class 0>
using uninitialized_move_result = uninitialized_copy_result<I, 0>;
template<InputIterator I, Sentinel<I> S1,
ro—throw—forward—tteratorNoThrowForwardIterator O,
ne—threw—sentsnetNoThrowSentinel<0> 52>
requires Constructible<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, 0>
uninitialized_move(I ifirst, S1 ilast, 0 ofirst, S2 olast);
template<InputRange IR, wo—throw—forward—raengeloThrowForwardRange OR>
requires Constructible<iter_value_t<iterator_t<OR>>, iter_rvalue_reference_t<iterator_t<IR>>>
uninitialized_move_result<safe_iterator_t<IR>, safe_iterator_t<OR>>
uninitialized_move(IR&& ir, OR&& or);

template<class I, class 0>
using uninitialized_move_n_result = uninitialized_copy_result<I, 0>;
template<Inputlterator I, wmo—throw—forward—tteratorNoThrowForwardlterator O,
no-throw—sentinetNoThrowSentinel<0> S>
requires Constructible<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, 0>
uninitialized_move_n(I ifirst, iter_difference_t<I> n, 0 ofirst, S olast);

namespace ranges {
template<ro-throw—forward—tteratorNoThrowForwardIterator I,
no—throw—sentinetNoThrowSentinel<I> S, class T>
requires Constructible<iter_value_t<I>, const T&>
I uninitialized_fill(I first, S last, const T& x);
template<no—throw—forward—rangeNoThrowForwardRange R, class T>
requires Constructible<iter_value_t<iterator_t<R>>, const T&>
safe_iterator_t<R> uninitialized_fill(R&& r, const T& x);

template<nrno—throw—forward—tteratorNoThrowForwvardlterator I, class T>

requires Constructible<iter_value_t<I>, const T&>
I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);

namespace ranges {
template<Destructible T>
void destroy_at(T* location) noexcept;

template<ro-throw—tnput—tteratorNoThrowlnputIterator I,
no—throw-sentinetNoThrowSentinel<I> 8>

requires Destructible<iter_value_t<I>>
I destroy(I first, S last) noexcept;

template<no—throw—input—rangeNoThrowInputRange R>

requires Destructible<iter_value_t<iterator_t<R>>
safe_iterator_t<R> destroy(R&& r) noexcept;

template<no-throw—tnput—tteratorNoThrowlnputIterator I>

requires Destructible<iter_value_t<I>>
I destroy_n(I first, iter_difference_t<I> n) noexcept;

and modify the declarations of the affected algorithms similarly where they appear in the subclauses of
[specialized.algorithms].

Modify [special.mem.concepts] as follows:

Some algorithms in this subclause are constrained with the following expesition-enly concepts:

template<class I>

concept wmo-throw—input—iteratorNoThrowlnputlterator = //—exposition—onlty
InputIterator<I> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
Same<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>;

No exceptions are thrown from increment, copy construction, move construction, copy
assignment, move assignment, or indirection through valid iterators.

template<class S, class I>
concept no—throw—serntinetNoThrowSentinel = Sentinel<S, I>; %%~expesitieﬁ*eﬁ}y
No exceptions are thrown from comparisons between objects of type I and S.

[Note: The distinction between Sentinel and nro-throw-sentimellloThrowSentinel is
purely semantic. — end note|

template<class R>
concept no—throw—snput—rangeNoThrowInputRange = //—exposition—onlty
Range<R> &&

no—throw—tnput—tteratorNoThrowlnputlterator<iterator_t<R>> &&
no-throw—sentinetloThrowSentinel<sentinel_ t<R>, iterator_t<R>>;

No exceptions are thrown from calls to begin and end on an object of type R.

template<class I>

concept mo—throw—forward—iteratorNoThrowForwvardIterator = //—expesition—only
no—throw—input—tteratorNoThrowlnputIterator<I> &&

ForwardIterator<I> &&
no—throw—sentinetNoThrowSentinel<I, I>;

template<class R>

concept nmo-throw—forward—rangeNoThrowvForwardRange = //—expeosition—only
no—throw—input—rengeNoThrowInputRange<R> &&
no—throw—forward—tteratorNoThrowForwvardIterator<iterator_t<R>>;

7 Use cases left dangling [dangle]

What does this program fragment do in P08967

std: :vector<int> £();
o = std::ranges::copy(f(), o).out;

10

how about this one:
std: :ranges::copy(f(), std::ostream_iterator<int>{std::coutl});

The correct answer is, “These fragments are ill-formed because the iterator into the input range that
ranges: : copy returns would dangle - despite that the program fragment ignores that value - because LEWG
asked us to remove the dangling wrapper and make such calls ill-formed.”

In the Ranges TS / revision one of P0896 an algorithm that returns an iterator into a range that was passed
as an rvalue argument first wraps that iterator with the dangling wrapper template. A caller must retrieve
the iterator value from the wrapper by calling a member function, opting in to potentially dangerous behavior
explicitly. The use of dangling here makes it impossible for a user to inadvertently use an iterator that
dangles.

In practice, the majority of range-v3 users in an extremely rigorous poll of the #ranges Slack channel (i.e.,
the author and two people who responded) never extract the value from a dangling wrapper. We prefer to
always pass lvalue ranges to algorithms when we plan to use the returned iterator, and use dangling only as
a tool to help us avoid inadvertent use of potentially dangling iterators. Unfortunately, PO896 makes calls
that would have used dangling in the TS design ill-formed which forces passing ranges as lvalues even when
the dangling iterator value is not used.

We propose bringing back dangling in a limited capacity as a non-template tag type to be returned by calls
that would otherwise return a dangling iterator value. This change makes the program fragments above
well-formed, but without introducing the potentially unsafe behavior that LEWG found objectionable in the
prior dangling design: there’s no stored iterator value to retrieve.

7.1 Technical specifications [dangle.words]

Introduce class dangling into the <ranges> synopsis in [ranges.syn]:
struct view_base { };

// [dangling], dangling
class dangling;

template<fowarding—rangeRange R>
using safe_iterator_t =
conditional_t<forwarding-range<R>, iterator_t<R>, dangling>;

// [range.requirements], range requirements
[...]

template<Iterator I, Sentinel<I> S = I, subrange_kind K = see below>
requires K == subrange_kind::sized || !SizedSentinel<S, I>
class subrange;

template<forwarding—rangeRange R>
using safe_subrange_t = subrange<iterator_t<R>>

conditional_t<forwarding-range<R>, subrange<iterator_t<R>>, dangling>;

// [range.adaptors.all]
namespace view { inline constexpr unspecified all = unspecified; }

Add a new subclause to [range.utility], immediately before [range.view_interface]:

23.7.1 class dangling [dangling]
The tag type dangling is used to indicate that an algorithm that typically returns an iterator
into a Range argument does not return an iterator into a particular rvalue Range argument which
could potentially dangle.

[Example:

vector<int> f();
auto resultl = ranges::find(£(), 42); // #1

11

static_assert(Same<decltype(resultl), dangling>);

auto vec = f();

auto result2 = ranges::find(vec, 42); // #2
static_assert(Same<decltype(result2), vector<int>::iterator>);
auto result3 = ranges::find(subrange{vec}, 42); // #3
static_assert(Same<decltype(result3), vector<int>::iterator>);

The call to ranges: :find at #1 returns dangling since £ () is an rvalue vector; the vector
could potentially be destroyed before a returned iterator is dereferenced. However, the calls at
#2 and #3 both return iterators since vec is an lvalue range and specializations of subrange
model forwarding-range, respectively. end example]

namespace std {
class dangling {

public:
constexpr dangling() noexcept = default;
template<class... Args>
constexpr dangling(Args&&...) noexcept { }
};
}

Bibliography

[1] Eric Niebler. P0789r3: Range adaptors and utilities, 05 2018. http://www.open-std.org/jtcl/sc22/
wg21/docs/papers/2018/p0789r3.pdf.

[2] Eric Niebler, Casey Carter, and Christopher Di Bella. PO896R3: The one ranges proposal, 10 2018.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0896r3.pdf.

12

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0789r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0789r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r3.pdf

	1 Abstract
	1.1 Revision History
	1.1.1 Revision 0

	2 Deprecate move_iterator::operator->
	2.1 Technical Specifications

	3 ref-view => ref_view
	3.1 Technical Specifications

	4 Comparison function object untemplates
	4.1 Technical specifications

	5 Reversing a reverse_view
	5.1 Technical specifications

	6 Exposing exposition-only concepts
	6.1 Technical specifications

	7 Use cases left dangling
	7.1 Technical specifications
	23.7.1 class dangling

	Bibliography

