
Reserve more freedom for atomic_ref<>
implementers

Author: Olivier Giroux (NVIDIA) This paper: P1298R0 Date: 2018-10-08.
Audience: SG1

1. What is atomic_ref<>?

The facility for atomic access to non-atomic types introduced by http://wg21.link
/p0019 (R8 as of this writing). As an example, an object of type
atomic_ref<int> adapts the interface of atomic<int> to an underlying object
of type int.

2. Why should implementers ask for more freedom?

The specification for the atomic_ref<> types allows less implementation
diversity than the corresponding atomic<> types for non-lock-free types, in
ways that affect other discussions ongoing in WG21 (like freestanding). In
particular, the current proposal reflects a dislike in SG1 for implementations that
use embedded locks (locks embedded inside atomic<> objects) instead of lock
tables (locks in the library, associated by an address hash).

Implementers should ask for the freedom to only implement atomic_ref<> that
are either lock-free (by un-defining or implementation-defining the effects of
the constructor for non-lock-free atomic_ref<> types), or can make use of
embedded locks (by un-defining concurrent invocations of the constructor,
perhaps conditionally to non-lock-free types, or by introducing new types a user
can use to manage the lifetime and associativity of the lock).

There is potentially a lot of design space here, only the simples step will be
proposed here.

3. What is proposed?

Make things less defined. Choose one of the following:

Proposal A: un-define construction of non-lock-free atomic_ref<>.

This is the simplest and most powerful lever. For now, users can check for this
using is_always_lock_free, and we can relax this later.

uaf://header-n43
af://n43
uaf://header-n46
af://n46
http://wg21.link/p0019
uaf://header-n48
af://n48
uaf://header-n52
af://n52
uaf://header-n54
af://n54

atomic_ref(T& obj);

Requires: is_always_lock_free is true and the referenced object shall be
aligned to required_alignment.

Proposal B: un-define concurrent construction of atomic_ref<>.

Equally simply:

While any atomic_ref instances exists which references the *ptr object, all
accesses to that object shall exclusively occur through this those atomic_ref
instances.

This is not likely to be as popular as proposal A, but could be modified to the less
stringent implementation-defined. This still would effectively remove the
concurrent construction feature from portable code, but implementations are
likely to agree that at least instances of lock-free atomic_ref<> can be
constructed concurrently.

uaf://header-n56
af://n56

