
d1436r3.md 1/14/2020

1 / 13

P1436r2: Executor properties for affinity-based execution
Date: 2019-11-23

Audience: SG1, SG14

Authors: Gordon Brown, Ruyman Reyes, Michael Wong, H. Carter Edwards, Thomas Rodgers, Mark Hoemmen, Tom
Scogland

Emails: gordon@codeplay.com, ruyman@codeplay.com, michael@codeplay.com, hedwards@nvidia.com,
rodgert@twrodgers.com, mhoemme@sandia.gov, tscogland@llnl.gov

Reply to: gordon@codeplay.com

Acknowledgements
This paper is the result of discussions from man contributors within SG1, SG14 and the heterogeneous C++ group, including
Patrice Roy, Carl Cook, Jeff Hammond, Hartmut Kaiser, Christian Trott, Paul Blinzer, Alex Voicu, Nat Goodspeed, Tony Tye,
Chris Kohlhoff and Domagoj Šarić.

Changelog

P1436r3 (PRA 2020)

Rename bulk_execution_affinity_t::scatter_t to bulk_execution_affinity_t::spread_t.
Rename bulk_execution_affinity_t::compact_t to bulk_execution_affinity_t::close_t.
Refine the wording of the bulk_execution_affinity_t properties to clarify the requirements on binding and chunking,
based on feedback from SG1.

P1436r2 (BEL 2019)

Alter the wording on the bulk_execution_affinity_t properties so they are now hints that request the executor
provide a particular pattern of binding, rather than a guarantee.

P1436r1 (COL 2019)

Introduce wording to clarify when two invocations of bulk_execute are expected to have consistent binding.
Introduce wording to describe how bulk_execute should handle an execution context failing to provide the guaranteed
binding.
Update the wording of bulk_execution_affinity.scatter and bulk_execution_affinity.balance to better describe the
expected binding pattern.

P1436r0 (KON 2019)

Separation of high-level features from P0796r3 [35].
Update motivational examples.
Introduce new executor property concurrency_t.
Introduce new executor property execution_locality_intersection_t.
Introduce new executor property memory_locality_intersection_t.
Update direction for future work.

P0796r3 (SAN 2018)

Remove reference counting requirement from execution_resource.
Change lifetime model of execution_resource: it now either consistently identifies some underlying resource, or is
invalid; context creation rejects an invalid resource.ster
Remove this_thread::bind & this_thread::unbind interfaces.

http://wg21.link/p0796

d1436r3.md 1/14/2020

2 / 13

Make execution_resources iterable by replacing execution_resource::resources with execution_resource::begin
and execution_resource::end.
Add size and operator[] for execution_resource.
Rename this_system::get_resources to this_system::discover_topology.
Introduce memory_resource to represent the memory component of a system topology.
Remove can_place_memory and can_place_agents from the execution_resource as these are no longer required.
Remove memory_resource and allocator from the execution_context as these no longer make sense.
Update the wording to describe how execution resources and memory resources are structured.
Refactor affinity_query to be between an execution_resource and a memory_resource.

P0796r2 (RAP 2018)

Introduce a free function for retrieving the execution resource underlying the current thread of execution.
Introduce this_thread::bind & this_thread::unbind for binding and unbinding a thread of execution to an execution
resource.
Introduce bulk_execution_affinity executor properties for specifying affinity binding patterns on bulk execution
functions.

P0796r1 (JAX 2018)

Introduce proposed wording.
Based on feedback from SG1, introduce a pair-wise interface for querying the relative affinity between execution
resources.
Introduce an interface for retrieving an allocator or polymorphic memory resource.
Based on feedback from SG1, remove requirement for a hierarchical system topology structure, which doesn't require
a root resource.

P0796r0 (ABQ 2017)

Initial proposal.
Enumerate design space, hierarchical affinity, issues to the committee.

Abstract
This paper is the result of a request from SG1 at the 2018 San Diego meeting to split P0796: Supporting Heterogeneous &
Distributed Computing Through Affinity [35] into two separate papers, one for the high-level interface and one for the low-
level interface. This paper focusses on the high-level interface: a series of properties for querying affinity relationships and
requesting affinity on work being executed. P0437 will focus on the low-level interface: a mechanism for discovering the
topology and affinity properties of a given system, however this paper was not submitted in this mailing.

The aim of this paper is to provide a number of executor properties that if supported allow the user of an executor to query
and manipulate the binding of execution agents and the underlying execution resources of the threads of execution they are
run on.

Motivation
Affinity refers to the "closeness" in terms of memory access performance, between running code, the hardware execution
resource on which the code runs, and the data that the code accesses. A hardware execution resource has "more affinity" to
a part of memory or to some data, if it has lower latency and/or higher bandwidth when accessing that memory / those
data.

On almost all computer architectures, the cost of accessing different data may differ. Most computers have caches that are
associated with specific processing units. If the operating system moves a thread or process from one processing unit to
another, the thread or process will no longer have data in its new cache that it had in its old cache. This may make the next
access to those data slower. Many computers also have a Non-Uniform Memory Architecture (NUMA), which means that
even though all processing units see a single memory in terms of programming model, different processing units may still
have more affinity to some parts of memory than others. NUMA exists because it is difficult to scale non-NUMA memory
systems to the performance needed by today's highly parallel computers and applications.

http://wg21.link/p0796

d1436r3.md 1/14/2020

3 / 13

One strategy to improve applications' performance, given the importance of affinity, is processor and memory binding.
Keeping a process bound to a specific thread and local memory region optimizes cache affinity. It also reduces context
switching and unnecessary scheduler activity. Since memory accesses to remote locations incur higher latency and/or lower
bandwidth, control of thread placement to enforce affinity within parallel applications is crucial to fuel all the cores and to
exploit the full performance of the memory subsystem on NUMA computers.

Operating systems (OSes) traditionally take responsibility for assigning threads or processes to run on processing units.
However, OSes may use high-level policies for this assignment that do not necessarily match the optimal usage pattern for a
given application. Application developers must leverage the placement of memory and placement of threads for best
performance on current and future architectures. For C++ developers to achieve this, native support for placement of
threads and memory is critical for application portability. We will refer to this as the affinity problem.

The affinity problem is especially challenging for applications whose behavior changes over time or is hard to predict, or
when different applications interfere with each other's performance. Today, most OSes already can group processing units
according to their locality and distribute processes, while keeping threads close to the initial thread, or even avoid migrating
threads and maintain first touch policy. Nevertheless, most programs can change their work distribution, especially in the
presence of nested parallelism.

Frequently, data are initialized at the beginning of the program by the initial thread and are used by multiple threads. While
some OSes automatically migrate threads or data for better affinity, migration may have high overhead. In an optimal case,
the OS may automatically detect which thread access which data most frequently, or it may replicate data which are read by
multiple threads, or migrate data which are modified and used by threads residing on remote locality groups. However, the
OS often does a reasonable job, if the machine is not overloaded, if the application carefully uses first-touch allocation, and
if the program does not change its behavior with respect to locality.

The affinity interface we propose should help computers achieve a much higher fraction of peak memory bandwidth when
using parallel algorithms. In the future, we plan to extend this to heterogeneous and distributed computing. This follows the
lead of OpenMP [2], which has plans to integrate its affinity model with its heterogeneity model [3]. (One of the authors of
this document participated in the design of OpenMP's affinity model.)

Motivational examples
To identify the requirements for supporting affinity we have looked at a number of use cases where affinity between
memory locality and execution can provide better performance.

Consider the following code example (Listing 1) where the C++17 parallel STL algorithm for_each is used to modify the
elements of a std::vector data on an executor that will execute on a NUMA system with a number of CPU cores. However
the memory is allocated by the std::vector default allocator immediately during the construction of data on memory local
to the calling thread of execution. This means that the memory allocated for data may have poor locality to all of the NUMA
regions on the system, other than the one in which the constructor executed. Therefore, accesses in the parallel for_each
made by threads in other NUMA regions will incur high latency. In this example, this is avoided by migrating data to have
better affinity with the NUMA regions on the system using an executor with the bulk_execution_affinity.spread property
applied, before it is accessed by the for_each. Note that a mechanism for migration is not yet specified in this paper, so this
example currently uses an arbitrary vendor API, vendor_api::migrate. Our intention is that a future revision of this paper
will specify a standard mechanism for migration

// NUMA executor representing N NUMA regions.
numa_executor exec;

// Storage required for vector allocated on construction local to current thread
// of execution, (N == 0).
std::vector<float> data(N * SIZE);

// Require the NUMA executor to bind its migration of memory to the underlying
// memory resources in a spread pattern.
auto affinityExec = std::execution::require(exec,
 bulk_execution_affinity.spread);

// Migrate the memory allocated for the vector across the NUMA regions in a
// spread pattern.
vendor_api::migrate(data, affinityExec);

https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2

d1436r3.md 1/14/2020

4 / 13

// Placement of data is local to NUMA region 0, so data for execution on other
// NUMA nodes must is migrated when accessed.
std::for_each(std::execution::par.on(affinityExec), std::begin(data),
 std::end(data), [=](float &value) { do_something(value): });

Listing 1: Migrating previously allocated memory.

Now consider a similar code example (Listing 2) where again the C++17 parallel STL algorithm for_each is used to modify
the elements of a std::vector data on an executor that will execute on a NUMA system with a number of CPU cores.
However, instead of migrating data to have affinity with the NUMA regions, data is allocated within a bulk execution by an
executor with the bulk_execution_affinity.spread property applied so that data is allocated with affinity. Then when the
for_each is called with the same executor, data maintains its affinity with the NUMA regions.

// NUMA executor representing N NUMA regions.
numa_executor exec;

// Reserve space in a vector for a unique_ptr for each index in the bulk
// execution.
std::vector<std::unique_ptr<float[SIZE]>> data{};
data.reserve(N);

// Require the NUMA executor to bind its allocation of memory to the underlying
// memory resources in a spread pattern.
auto affinityExec = std::execution::require(exec,
 bulk_execution_affinity.spread);

// Launch a bulk execution that will allocate each unique_ptr in the vector with
// locality to the nearest NUMA region.
affinityExec.bulk_execute([&](size_t id) {
 data[id] = std::make_unique<float>(); }, N, sharedFactory);

// Execute a for_each using the same executor so that each unique_ptr in the
// vector maintains its locality.
std::for_each(std::execution::par.on(affinityExec), std::begin(data),
 std::end(data), [=](float &value) { do_something(value): });

Listing 2: Aligning memory and process affinity.

Background Research
In this paper we describe the problem space of affinity for C++, the various challenges which need to be addressed in
defining a partitioning and affinity interface for C++, and some suggested solutions. These include:

How to migrate memory work and memory allocations between execution resources.
How to query affinity properties between different executors.
How to bind execution and allocation particular executors.

Wherever possible, we also evaluate how an affinity-based solution could be scaled to support both distributed and
heterogeneous systems.

State of the art
The affinity problem existed for some time, and there are a number of third-party libraries and standards which provide
APIs to solve the problem. In order to standardize this process for C++, we must carefully look at all of these approaches
and identify which ideas are suitable for adoption into C++. Below is a list of the libraries and standards from which this
proposal will draw:

Portable Hardware Locality [4]
SYCL 1.2 [5]

https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

d1436r3.md 1/14/2020

5 / 13

OpenCL 2.2 [6]
HSA [7]
OpenMP 5.0 [8]
cpuaff [9]
Persistent Memory Programming [10]
MEMKIND [11]
Solaris pbind() [12]
Linux sched_setaffinity() [13]
Windows SetThreadAffinityMask() [14]
Chapel [15]
X10 [16]
UPC++ [17]
TBB [18]
HPX [19]
MADNESS [20][32]

Libraries such as the Portable Hardware Locality (hwloc) library provide a low-level of hardware abstraction, and offer a
solution for the portability problem by supporting many platforms and operating systems. This and similar approaches use a
tree structure to represent details of CPUs and the memory system. However, even some current systems cannot be
represented correctly by a tree, if the number of hops between two sockets varies between socket pairs [2].

Some systems give additional user control through explicit binding of threads to processors through environment variables
consumed by various compilers, system commands, or system calls. Examples of system commands include Linux's taskset
and numactl, and Windows' start /affinity. System call examples include Solaris' pbind(), Linux's sched_setaffinity(),
and Windows' SetThreadAffinityMask().

Relative affinity of execution resources
In order to make decisions about where to place execution or allocate memory in a given systemʼs resource topology, it is
important to understand the concept of affinity between different hardware and software resources. This is usually
expressed in terms of latency between two resources. Distance does not need to be symmetric in all architectures. The
relative position of two components in a system's topology does not necessarily indicate their affinity. For example, two
cores from two different CPU sockets may have the same latency to access the same NUMA memory node.

This can be scaled to heterogeneous and distributed systems, as the relative affinity between components can apply to
discrete heterogeneous and distributed systems as well.

Inaccessible memory
The initial solution proposed by this paper may only target systems with a single addressable memory region. It may
therefore exclude certain heterogeneous devices such as some discrete GPUs. However, in order to maintain a unified
interface going forward, the initial solution should consider these devices and be able to scale to support them in the future.

Proposal

Overview
In this paper we propose executor properties that can be used for querying the affinity between different hardware and
software resources within a system available that are available to executors and to require binding of execution agents to
the underlying hardware or software resources in order to achieve performance through data locality. These properties
provide a low granularity and is aimed at users who may have little or no knowledge of the system architecture.

The interface described in this paper builds on the existing interface for executors and execution contexts defined in the
executors proposal [22].

Execution resources
An execution resource represents an abstraction of a hardware or software layer that guarantees a particular set of affinity
properties, where the level of abstraction is implementation-defined. An implementation is permitted to migrate any

https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
https://github.com/m-a-d-n-e-s-s/madness
http://dx.doi.org/10.1137/15M1026171
https://www.open-mpi.org/projects/hwloc/
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
http://wg21.link/p0443

d1436r3.md 1/14/2020

6 / 13

underlying resources providing it guarantees the affinity properties remain consistent. This allows freedom for the
implementor but also consistency for users.

If an execution resource is valid, then it must always point to the same underlying thing. For example, a resource cannot
first point to one CPU core, and then suddenly point to a different CPU core. An execution context can thus rely on
properties like binding of operating system threads to CPU cores. However, the "thing" to which an execution resource
points may be a dynamic, possibly a software-managed pool of hardware. Here are three examples of this phenomenon:

1. The "hardware" may actually be a virtual machine (VM). At any point, the VM may pause, migrate to different physical
hardware, and resume. If the VM presents the same virtual hardware before and after the migration, then the
resources that an application running on the VM sees should not change.

2. The OS may maintain a pool of a varying number of CPU cores as a shared resource among different user-level
processes. When a process stops using the resource, the OS may reclaim cores. It may make sense to present this
pool as an execution resource.

3. A low-level device driver on a laptop may switch between a "discrete" GPU and an "integrated" GPU, depending on
utilization and power constraints. If the two GPUs have the same instruction set and can access the same memory, it
may make sense to present them as a "virtualized" single execution resource.

In summary, an execution resource either identifies a thing uniquely, or harmlessly points to nothing.

Header <execution> synopsis
Below (Listing 3) is a proposed extension to the <execution> header.

namespace std {
namespace experimental {
namespace execution {

// Bulk execution affinity properties

struct bulk_execution_affinity_t;

constexpr bulk_execution_affinity_t bulk_execution_affinity;

// Concurrency property

struct concurrency_t;

constexpr concurrency_t concurrency;

// Execution locality intersection property

struct execution_locality_intersection_t;

constexpr execution_locality_intersection_t<DestExecutor>;

// Memory locality intersection property

struct memory_locality_intersection_t;

constexpr memory_locality_intersection_t memory_locality_intersection;

} // execution
} // experimental
} // std

Listing 3: Header synopsis

Bulk execution affinity properties
We propose an executor property group called bulk_execution_affinity which contains the nested properties none,
balanced, spread and close. Each of these properties, if applied to an executor provides a hint to the executor that

d1436r3.md 1/14/2020

7 / 13

requests a particular binding of execution agents to the execution resources associated with the executor in a particular
pattern.

Example

Below is an example (Listing 4) of executing a parallel task over 8 threads using bulk_execute, with the affinity binding
bulk_execution_affinity.spread. We request affinity binding using prefer and then check to see if the executor is able to
support it using query.

{
 bulk_executor exec;

 auto affExec = execution::prefer(exec,
 execution::bulk_execution_affinity.spread);

 if (execution::query(affExec, execution::bulk_execution_affinity.spread)) {
 std::cout << "bulk_execute using bulk_execution_affinity.spread"
 << std::endl;
 }

 execution::bulk_execute(affExec, [](std::size_t i) {
 func(i);
 }, 8);
}

Listing 4: Example of using the bulk_execution_affinity property

Proposed Wording

The bulk_execution_affinity_t properties are a group of mutually exclusive behavioral properties (as defined in P0443
[22]) which provide a hint to the executor to, if possible, bind the execution agents created by a bulk invocation from an
executor, to the underlying execution resources in a particular pattern relative to their physical closeness.

The bulk_execution_affinity_t nested properties are defined using the following terms of art:

Available concurrency; which is defined the number of execution resources available to an executor which can be
bound to execution agents concurrently, assuming no contention.
Locality distance; which is defined an implementation-defined metric for measuring the relative affinity between
execution resources whereby execution resources with a lower locality distance are likely to have similar latency in
memory access operations, for a given memory location.

The bulk_execution_affinity_t nested properties also refer to the subdivision of execution resources, which is an
implementation-defined method of subdividing the available concurrency, generally based on groupings of execution
resources with the lowest locality distance to each other.

[Note: An alternative term of art for locality distance could be locality interference. --end note]

The bulk_execution_affinity_t property provides nested property types and objects as described below, where:

e denotes an executor object of type E,
f denotes a function object of type F&&,
s denotes a shape object of type execution::executor_shape<E>,
sf denotes a function object of type SF, and
a call to execution::bulk_execute(e, f, s) creates a consecutive sequence of work-items from 0 to s-1, mapped to
the available concurrency of e, that is a number of execution resources, which are subdivided in some
implementation-defined way.

Nested Property Type Nested Property Name Requirements

http://wg21.link/p0443

d1436r3.md 1/14/2020

8 / 13

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::none_t bulk_execution_affinity_t::none

A call to
execution::bulk_execute(e, f, s)
is not required to bind the created
execution agents for the work-items
of the iteration space specified by s
to execution resources.

bulk_execution_affinity_t::spread_t bulk_execution_spread_t::spread

A call to e.bulk_execute(f, s, sf)
should aim to bind the created
execution agents for the work-items
of the iteration space specified by s
to execution resources such that the
average locality distance of adjacent
work-items in the same subdivision
of the available concurrency is
maximized and the average locality
distance of adjacent work-items in
different subdivisions of the available
concurrency is maximized. The
binding of all execution agents to all
execution resources must not result
in the difference between the number
of execution agents assigned to any
execution resources being greater
than 1.

If e is not able to fulfil this aim the it
should fall back to
bulk_execution_affinity_t::none_t.

bulk_execution_affinity_t::close_t bulk_execution_close_t::close

A call to e.bulk_execute(f, s, sf)
should aim to bind the created
execution agents for the work-items
of the iteration space specified by s
to execution resources such that the
average locality distance between
adjacent work-items is minimized.
The binding of all execution agents to
all execution resources must not
result in the difference between the
number of execution agents assigned
to any execution resources being
greater than 1.

If e is not able to fulfil this aim the it
should fall back to
bulk_execution_affinity_t::none_t.

d1436r3.md 1/14/2020

9 / 13

Nested Property Type Nested Property Name Requirements

bulk_execution_affinity_t::balanced_t bulk_execution_balanced_t::balanced

A call to e.bulk_execute(f, s, sf)
should aim to bind the created
execution agents for the work-items
of the iteration space specified by s
to execution resources such that the
average locality distance of adjacent
work-items in the same subdivision
of the available concurrency is
minimized and the average locality
distance of adjacent work-items in
different subdivisions of the available
concurrency is maximized. The
binding of all execution agents to all
execution resources must not result
in the difference between the number
of execution agents assigned to any
execution resources being greater
than 1.

If e is not able to fulfil this aim the it
should fall back to
bulk_execution_affinity_t::none_t.

[Note: Note: The subdivision of the available concurrency is implementation-defined. --end note]

[Note: Note: If the number of work-items specified by s is larger than the available concurrency, the manner in which
that iteration space is subdivided into a consecutive sequence of work-items is implementation-defined. --end note]

[Note: It's expected that the default value of bulk_execution_affinity_t for most executors be
bulk_execution_affinity_t::none_t. --end note]

[Note: If two executors e1 and e2 invoke a bulk execution function in order, where execution::query(e1,
execution::context) == query(e2, execution::context) is true and execution::query(e1,
execution::bulk_execution_affinity) == query(e2, execution::bulk_execution_affinity) is false, this will likely
result in e1 binding execution agents if necessary to achieve the requested affinity pattern and then e2 rebinding to
achieve the new affinity pattern. Rebinding execution agents to execution resources may take substantial time and
may affect performance of subsequent code. --end note]

Concurrency property
We propose a query-only executor property called concurrency_t which returns the maximum potential concurrency
available to executor.

Example

Below is an example (Listing 5) of querying an executor for the maximum concurrency it can provide via concurrency.

{
 executor exec;

 auto maxConcurrency = execution::query(exec, execution::concurrency);
}

Listing 5: Example of using the concurrency property

Proposed Wording
The concurrency_t property (Listing 6) is a query-only property as defined in P0443 [22].

http://wg21.link/p0443

d1436r3.md 1/14/2020

10 / 13

struct concurrency_t
{
 static constexpr bool is_requirable = false;
 static constexpr bool is_preferable = false;

 using polymorphic_query_result_type = size_t;

 template<class Executor>
 static constexpr decltype(auto) static_query_v
 = Executor::query(concurrency_t());
};

Listing 6: Proposed specification for concurrency_t

The concurrency_t property can be used only with query, which returns the maximum potential concurrency available to
the executor. If the value is not well defined or not computable, 0 is returned.

The value returned from execution::query(e, concurrency_t), where e is an executor, shall not change between
invocations.

[Note: The expectation here is that the maximum available concurrency for an executor as described here is
equivalent to calling this_thread::hardware_concurrency() --end note]

Execution locality intersection property
We propose a query-only executor property called execution_locality_intersection_t which returns the maximum
potential concurrency that ia available to both of two executors.

Example

Below is an example (Listing 7) of querying whether two executors have overlapping maximum concurrency using
execution_locality_intersection.

{
 executor_a execA;
 executor_b execB;

 auto concurrencyOverlap = execution::query(execA,
 execution::execution_locality_intersection(execB));
}

Listing 7: Example of using the concurrency property

Proposed Wording
The execution_locality_intersection_t property (Listing 8) is a query-only property as defined in P0443 [22].

struct execution_locality_intersection_t
{
 static constexpr bool is_requirable = false;
 static constexpr bool is_preferable = false;

 using polymorphic_query_result_type = size_t;

 template<class Executor, class DestExecutor>
 static constexpr decltype(auto) static_query_v
 = Executor::query(execution_locality_intersection_t{}(DestExecutor{})));

 template <class DestExecutor>

http://wg21.link/p0443

d1436r3.md 1/14/2020

11 / 13

 size_t operator()(DestExecutor &&d);
};

Listing 8: Proposed specification for execution_locality_intersection_t

The execution_locality_intersection_t property can be used only with query, which returns the maximum potential
concurrency available to both executors. If the value is not well defined or not computable, 0 is returned.

The value returned from execution::query(e1, execution_locality_intersection_t(e2)), where e1 and e2 are executors,
shall not change between invocations.

[Note: The expectation here is that the maximum available concurrency for an executor as described here is
equivalent to calling this_thread::hardware_concurrency() --end note]

Memory locality intersection property
We propose a query-only executor property called execution_locality_intersection_t which specifies whether two
executors share a common memory locality, such that memory allocated by those executors both have similar affinity.

This is useful for determining whether memory local to one executor would require migration in order to be local to another
executor.

Example

Below is an example (Listing 9) of querying whether two executors have common memory locality
execution_locality_intersection.

{
 executor_a execA;
 executor_b execB;

 auto concurrencyOverlap = execution::query(execA,
 execution::execution_locality_intersection(execB));
}

Listing 9: Example of using the concurrency property

Proposed Wording
The memory_locality_intersection_t property (Listing 10) is a query-only property as defined in P0443 [22].

struct memory_locality_intersection_t
{
 static constexpr bool is_requirable = false;
 static constexpr bool is_preferable = false;

 using polymorphic_query_result_type = bool;

 template<class Executor, class DestExecutor>
 static constexpr decltype(auto) static_query_v
 = Executor::query(memory_locality_intersection_t{}(DestExecutor{})));

 template <class DestExecutor>
 bool operator()(DestExecutor &&d);
};

Listing 10: Proposed specification for memory_locality_intersection_t

The memory_locality_intersection_t property can be used only with query, which returns true if both executors share a
common address space, and false otherwise. If the value is not well defined or not computable, false is returned.

http://wg21.link/p0443

d1436r3.md 1/14/2020

12 / 13

The value returned from execution::query(e1, memory_locality_intersection_t(e2)), where e1 and e2 are executors,
shall not change between invocations.

Future Work
There are a number of additional features which we are considering for inclusion in this paper but are not ready yet.

Iteration space subdivision property
It is defined in this proposal for the bulk_execution_affinity_t properties that when the size in an invocation of
execution::bulk_execute is greater than the available concurrency then it is implementation defined how that iteration
space is subdivided into a consecutive sequence of work-items. The authors of this proposal intend to propose a follow up
property for specifying how an iteration space should be subdivided into chunks in this case.

Migrating data
This paper currently provides a mechanism for detecting whether two executors share a common memory locality. However,
it does not provide a way to invoke migration of data allocated local to one executor into the locality of another executor.

We envision that this mechanic could be facilitated by a customization point on two executors and perhaps a span or mdspan
accessor.

Supporting different affinity domains
This paper currently assumes a NUMA-like system, however there are many other kinds of systems with many different
architectures with different kinds of processors, memory and connections between them.

In order to accurately take advantage of the range of systems available now and in the future we will need some way to
parameterize or enumerate the different affinity domains which an executor can structure around.

Furthermore, in order to have control over those affinity domains we need a way in which to mask out the components of
that domain that we wish to work with.

However, whichever option we opt for, it must be in such a way as to allow further additions as new system architectures
become available.

Acknowledgments
Thanks to Christopher Di Bella, Toomas Remmelg, and Morris Hafner for their reviews and suggestions.

References
[1] P0687: Data Movement in C++

[2] The Design of OpenMP Thread Affinity

[3] Euro-Par 2011 Parallel Processing: 17th International, Affinity Matters

[4] Portable Hardware Locality

[5] SYCL 1.2.1

[6] OpenCL 2.2

[7] HSA

[8] OpenMP 5.0

[9] cpuaff

[10] Persistent Memory Programming

http://wg21.link/p0687
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/

d1436r3.md 1/14/2020

13 / 13

[11] MEMKIND

[12] Solaris pbind()

[13] Linux sched_setaffinity()

[14] Windows SetThreadAffinityMask()

[15] Chapel

[16] X10

[17] UPC++

[18] TBB

[19] HPX

[20] MADNESS

[21] Portable Hardware Locality Istopo

[22] A Unified Executors Proposal for C++

[23] P0737 : Execution Context of Execution Agents

[24] Exposing the Locality of new Memory Hierarchies to HPC Applications

[25] MPI

[26] Parallel Virtual Machine

[27] Building Fault-Tolerant Parallel Applications

[28] Post-failure recovery of MPI communication capability

[29] Fault Tolerance in MPI Programs

[30] p0323r4 std::expected

[31]: Intel® Movidius™ Neural Compute Stick

[32] MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

[33] OpenMP topic: Affinity

[34] Balanced Affinity Type

[35] Supporting Heterogeneous & Distributed Computing Through Affinity

[36] System topology discovery for heterogeneous & distributed computing

https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
https://github.com/m-a-d-n-e-s-s/madness
https://www.open-mpi.org/projects/hwloc/lstopo/
http://wg21.link/p0443
http://wg21.link/p0737
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
http://mpi-forum.org/docs/
http://www.csm.ornl.gov/pvm/
http://etutorials.org/Linux+systems/cluster+computing+with+linux/Part+II+Parallel+Programming/Chapter+11+Fault-Tolerant+and+Adaptive+Programs+with+PVM/11.2+Building+Fault-Tolerant+Parallel+Applications/
http://journals.sagepub.com/doi/10.1177/1094342013488238
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html
https://developer.movidius.com/
http://dx.doi.org/10.1137/15M1026171
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html
https://software.intel.com/en-us/node/522518
http://wg21.link/p0796
http://wg21.link/p1795

