
Unifying source_location and contract_violation
Document #: P1639R0
Date: 2019-06-16
Project: Programming Language C++
Audience: LEWG, LWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Proposed change

We propose that contract_violation uses source_location to report the location where a
contract violation happens. The goal is to avoid API duplication and to make it easier to log
contract violations in systems designed around source_location.

This modification matches the original intent of [P0542] as discussed in Kona 2017.

Note that source_location::file_name and source_location::function_name return a const
char* unlike contract_violation whose function_name and file_name return a string_view.
However, while LEWG has reaffirmed several times the design of source_location, we found no
explanation why contract_violation is diverging from that design and the reasoning motivating
source_location’s design equally applies to contract_violation.

Moreover, the same logic can be applied to contract_violation::comment and contract_-
violation::assertion. This was discussed at length on the reflector, a few conclusions being
that

• (Unfortunately) most system apis are designed around null-terminated strings

• string_view therefore removes useful information from the underlying string

• Despite null-termination being a runtime property in the general case, it would be ABI
breaking to efficiently adapt string_view to track and query the null termination of the
underlying string.

• In the absence of a way to query null-termination, assuming it is at best UB and a terrible
practice, notably teaching-wise

• Adding a new null-terminated czstring_view type doesn’t have consensus and even if it did,
it raises a number of issues as how to manage an already complex overload set.

• It is unlikely we will find the best path forward in the C++20 time frame

• There are concerns that string_view might not be implementable in a freestanding imple-
mentation, which is a major issue since contract_violation supports a language feature.

Several other concerns related to the compilation costs of including and using string_view have
been raised, however, I do not believe these concerns hold much ground in the long run as modules

1

mailto:corentin.jabot@gmail.com


are supposed to solve this issue. Besides, forgoing type safety for compilation speed would set an
interesting precedent...

Nevertheless, there seem to be enough issues with string_view that it seems preferable not to use
it as a return parameter of contract_violation methods. It is possible that string_view might
never be a good type to return from a function.

Applicability

This papers depends on [P1208] being accepted by LWG. It was accepted by LEWG in Kona 2019.

Wording

�? Class contract_violation [support.contract.cviol]

namespace std {
class contract_violation {

public:
uint_least32_t line_number() const noexcept;
string_view file_name() const noexcept;
string_view function_name() const noexcept;
source_location location() const noexcept;
string_view const char* comment() const noexcept;
string_view const char* assertion_level() const noexcept;

};
}

The class contract_violation describes information about a contract violation generated by the
implementation.

uint_least32_t line_number() const noexcept;

Returns: The source code location where the contract violation happened. If the location is
unknown, an implementation may return 0.

string_view file_name() const noexcept;

Returns: The source file name where the contract violation happened. If the file name is
unknown, an implementation may return string_view{}.

string_view function_name() const noexcept;

Returns: The name of the function where the contract violation happened. If the function
name is unknown, an implementation may return string_view{}.

source_location location() const noexcept;

2



Returns: The source code location where the contract violation happened. If the location is
unknown, an implementation may return a default constructed source_location.

string_view const char* comment() const noexcept;

Returns: Implementation-defined text describing the predicate of the violated contract.

string_view const char* assertion_level() const noexcept;

Returns: Text describing the assertion-level of the violated contract.

References

[P0542] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, B. Stroustrup Support for
contract based programming in C++ https://wg21.link/P0542

[P1208] Robert Douglas, Corentin Jabot Adopt source location from Library Fundamentals V3 for
C++20 https://wg21.link/P1208

3

https://wg21.link/P0542
https://wg21.link/P1208

	1 Proposed change
	2 Applicability
	3 Wording
	3.1 Class contract_violation


