A Generic Library for Compile-time Routing

Document number: P1649R0O

Date: 2019-06-16

Project: Programming Language C++

Audience: LEWG, LWG

Authors: Mingxin Wang (Microsoft (China) Co., Ltd.)
Reply-to: Mingxin Wang <mingxwa@microsoft.com>

Table of Contents

A Generic Library for Compile-time ROULINGcc.ooriiiiieiiiieiieiiee ettt ese e seeesseesseenseeneeens 1
1 IIEEOAUCTION ...ttt b e bbbttt b e et b e e bt eb e et et et e sa e bt sbeeae et ennen 1
2 IMOEIVALION ...ttt bbbttt b e s bbbt bt et et e bt bt e bt e bt eb e ea b et e bt sa bt eb e eb e ea b et et e naeebeebeebeeneeneen 1
2.1 TYPE SELECTION ..ottt ettt et et s e st e s st e st esseenseessessaesseenseenseensesnsesseenseenseenseansenssanseensenn 2

2.2 Path SEIECHIONeuveieiiiiiit ettt b et et ettt b e s bt bt e bt et et e st b saeebe et eateten 3
22,1 AMOtivating ProDIEM........ccuiiiiiiiieieieee ettt et et na e taesneenean 3

2.2.2 SOIVE WIth 1 £ GO S R DT cittiiiietiee et et e et e e et e e et e e et e e e etaee e eeateeeeeaseeeeeanenas 4

2.2.3 Solve with the PropoSed LIDIarycccccveiiiiiiiiieiienieieeit ettt ettt enaeeneessaesseenees 6

3 TeChNICAL SPECIFICATIONeeieieeiieiiete ettt ettt st et et et e et e ese et ee b e enseensesssessaesseeseanseenseensenssenseensenn 7
3.1 Header SULIIEY™ SYNOPSIS 1.vveeuvertieriieiiesteeiteetestesteesteeteetessaesseesseeseeseasesseesseasseanseanseassesssesseeseensesnsesnsenses 7

3.2 Class template applicable temPlate .. e 7

1 Introduction

if constexpr and "SFINAE/Concepts based class/function template specialization" are generally used for
compile-time type/path selection (routing) in complex template libraries. However, according to my experience, they are
not so easy to code, maintain or test. Therefore, I designed a template library specifically for compile-time routing with
more usability, enabling template libraries to select type templates with flexible routing rules at compile-time without
dependent specializations.

This proposal will compare several existing ways and the proposed library to implement compile-time routing with a
motivating example, then illustrate the technical specifications of the library.

Here is a sample implementation of the library and it has already been used in the implementation of the Extending
Argument library [P1648R0] and the Concurrent Invocation library [P0642R2].

2 Motivation

According to my experience, "SFINAE/Concepts based class/function template specialization" is usually used in

1

https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p1649/applicable_template.h#L79-L90
https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p1648/extended.h#L177-L186
https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p1648/extended.h#L177-L186
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r0.pdf
https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/main/p0642/concurrent_invocation.h#L246-L253
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0642r2.pdf

compile-time implementation selection for types, and if constexpr is widely adopted in compile-time path selection.

However, I think they have certain limitations in engineering.

2.1Type Selection

"SFINAE/Concepts based class/function template specialization" only support one default implementation with a lower
priority and multiple specializations with a same higher priority. Therefore, it is inconvenient to define a type template

with a set of selection rules that is not the same as class template specialization. For example,

template <class T> class X { /* ... */ }; // #1

template <class T> requires A<T> class X<T> { /* ... */ }; // #2
template <class T> requires B<T> class X<T> { /* ... */ }; // #3
template <class T> requires C<T> class X<T> { /* ... */ }; // #4

In the declaration of X above, the default implementation (#1) has the lowest priority, and the rest three (#2~4)
specializations has a same higher priority. When specifying X with a class T, A<T>, B<KT> and C<T> shall be
well-formed and zero or strictly one of the constraints is satisfied.

However, when we want to change the priority in the sample code by assigning the highest priority to implementation
#2, it will become complicated. Before this proposed library was designed, I have tried two ways:

1. Narrow the constraints on implementation #3 and #4:
template <class T> requires (!'A<T> && B<T>) class X<T> { /* ... */ }; // #3
template <class T> requires (!'A<T> && C<T>) class X<T> { /* ... */ }; // #4

2. Rely on another "helper class":

template <class T> class Y { /* ... */ }; [// #1
template <class T> requires B<T> class Y<T> { /* ... */ }; // #3
template <class T> requires C<T> class Y<T> { /* ... */ }; // #4

template <class T> class X : public Y<T>
{ /* delegated ctor and assignments */ }; // delegate #3 and #4
template <class T> requires A<T> class X<T> { /* ... */ }; [/ #2

For the first solution, although it generally works, it is not rigorously reasonable, because it implicitly requires that
B<T> and C<T> shall always be well-formed even when A<T> is already well-formed to perform template resolution.
Moreover, if there are more specializations for X and more priorities, the constraints on each specialization will become
increasingly difficult to maintain or read.

For the second solution, the good thing is that Y<T> will not be instantiated if A<T> is satisfied, and the constraints
will be easier to maintain comparing to the previous solution. However, it is still confusing since it introduces another
vocabulary ¥, and the default implementation of X shall define its constructor and assignments delegating every potential
implementation of Y (each specialization of ¥ may have various customized constructors) for priority. But after all, it
could be a correct solution.

To simplify illustration, the term compile-time routing is defined to describe the requirements where different code
shall be generated based on type traits. To solve a compile-time routing problem with the proposed library, we should
define corresponding helper type traits for each route. When working with the proposed library, life will become easier,

2

because we are able define each specialization independently with more specific constraints and less interference with

each other:

template <class T> requires A<T> class XA { /* ... */ };
template <class T> requires B<T> class XB { /* ... */ };
template <class T> requires C<T> class XC { /* ... */ };
template <class T> class XD { /* ... */ };

And we can define the priority when using the types:

template <class T>

using X = applicable_template<
equal templates<XA>,
equal templates<XB, XC>,
equal templates<XD>>::type<T>;

In general, the proposed library provides a mechanism to decouple the implementation of a type from template
resolution. In the code above, applicable template and equal_ templates are the only facilities in the
proposed library, where equal templates is a tag representing class templates with the same priority and
applicable template<...>::type<...> will select the right template according to priority. Compile-time
errors are expected if there are more than one applicable template with the same priority or there is no applicable

template among all priorities.

2.2 Path Selection

2.2.1 A Motivating Problem

Suppose we are writing a simple template library for stringification with the following expression and semantics (s

denotes a value of std: : string):

template <class T>
std::string my to_string(const Té& value);
Effects: Stringify the input value with the following strategy:
- if std::to_string(value) is well-formed and the return value is convertible to std: : string, return
std::to_string(value),or
- ifvalue is convertible to std: : string, return static_cast<std::string>(value),or
- if T is a general tuple or container, recursively apply this function to each element in the aggregation, and return
a string containing the stringified result for each element in the format of: [stringified first element, stringified
second element, ...],or

- otherwise, the expression is ill-formed.

Note that a generic tuple could be an instance of std: : tuple, std: :pair, std: : array or other future standard

facilities where std: :get and std: : tuple_size are well-formed; a generic container could be any standard or

3

customized type that support for-range loop.

For example, if the function is used as below:

my to_string(

std: :make_tuple(

123,
std: :vector<double>{1l, 2, 3.14},
std::list<std::vector<std::string>>{{}, {"Hello"}, {"W", "or", "1d"}},

std: :make_ tuple(std::deque<int>{3, 2, 1}, "OK")));
The value of the returned std: : string should be:

[123, [1.000000, 2.000000, 3.140000], [[], [Hello], [W, or, 1d]]1, [I[3, 2, 1], OK]]

To simplify the illustration, we may assume the following type traits are well-formed and have specific semantics:

template <class T>
constexpr bool is primitive v

= /* whether std::to_string is applicable to a value of const T& */;

template <class T>
constexpr bool is_string convertible v

= std::is_convertible v<const T&, std::string>;

template <class T>

constexpr bool is_tuple v = /* whether const T& is a generic tuple type */;

template <class T>

constexpr bool is_container v = /* whether const T& is a generic container type */;

2.2.2 Solve with if constexpr

We may try 1f constexpr to solve this problem, and may come up with the code as follows:

template <class T>
std::string my to_string(const T& value) {

if constexpr (is_primitive v<T>) ({
return std::to_string(value);

} else if constexpr (is_string convertible v<T>) ({
return static_cast<std::string>(value);

} else if constexpr (is_tuple v<T>) {
static_assert('is_container v<T>); // #1: To avoid ambiguation
return /* ... */;

} else if constexpr (is_container v<T>) {

4

return /* ... */;
} else {

static_assert(false); // T does not match any rule

Although if constexpr works at compile-time, I think there are two defects in this implementation:
1. it may not compile because static_assert (false) may fire even if the path is not selected, and
2. for paths having the same priority (for generic tuple and containers in this case), it is required to manually maintain
a list of static_assert, like the one on the marked line #1, to avoid ambiguation for each path with a same
priority.
For the first issue, we could manually write a LONG static_assert at the beginning of the function, and keep it
consistent with the semantics of the function:
static_assert(is_primitive v<T> || is_string convertible v<T>
|| is_tuple v<T> || is_container v<T>);
Although it looks verbose, but it seems to be the simplest way to report potential abuse.
For the second issue, we could solve it by constrained function template overloads (Thanks to Nicolas Lesser). And

the final solution with 1f constexpr may look like:

template <class T> requires is_tuple v<T>

std::string my_ to_string for_aggregation(const T& value) { /* ... */ }

template <class T> requires is_container v<T>

std::string my_ to_string for_ aggregation(const T& value) { /* ... */ }

template <class T>
std::string my to_string(const T& value) ({
static_assert(is_primitive v<T> || is_string convertible v<T>
|l is_tuple v<T> || is_container_ v<T>);
if constexpr (is_primitive_ v<T>) ({
return std::to_string(value);
} else if constexpr (is_string convertible_ v<T>) ({
return static_cast<std::string>(value);
} else if constexpr (is_tuple v<T> || is_container_ v<T>) {

return my to_string for_ aggregation(value);

Although the last if constexpr expression seems to be redundant, we may need it when there are potentially more
paths with lower priority. Additionally, designers are also responsible for maintaining the list of constraints for the last

path as there are more function overloads with a same priority.

2.2.3 Solve with the Proposed Library

Similar to type selection, we could define type traits for stringification with corresponding constraints in this example.

Each implementation may contain a unique path:

template <class T> requires is_primitive_ v<T>
struct primitive_ stringification_traits ({
static inline std::string apply(const T& value)
{ return std::to_string(value); }

};

template <class T> requires is_string convertible v<T>
struct string stringification_traits ({
static inline std::string apply(const T& value)
{ return static_cast<std::string>(value); }

};

template <class T> requires is_tuple v<T>
struct tuple stringification traits ({
static inline std::string apply(const T& value) { return /* ... */;

};

template <class T> requires is_container_ v<T>
struct container_stringification_traits {
static inline std::string apply(const T& value) { return /* ... */;

};

Afterwards, we could implement the my to_string directly with these stringification traits:

template <class T>
std::string my to_string(const Té& value) {
return applicable_ template<
equal_ templates<primitive stringification_traits>,
equal_ templates<string stringification_traits>,

equal_ templates<

}

}

container stringification_traits, tuple_stringification_traits>

>::type<T>: :apply (value) ;

Although the solution based on the proposed library look a little bit longer than the one with if constexpr, I think

this solution is more concise and has better maintainability as well as testability because the stringification traits are

independent from each other, and the priority is only defined in the implementation of my to_string. A complete

implementation formy to_string could be found here.

https://github.com/wmx16835/my-stl/blob/9e62a8f6e643878df516c94bcab9880256348cc4/src/test/p1649/my_to_string.h#L71-L80

3 Technical Specification

3.1Header <utility> synopsis

The following content is intended to be merged into [utility.syn].
namespace std {

template <template <class...> class... TTs>
struct equal_ templates {};

template <class... ETs>

struct applicable_ template {
template <class... Args>
using type = see below;

};

3.2Class template applicable template

template <class... ETs>
struct applicable template;
Requires: Each type in the template parameter pack ETs shall be an instantiation of the class template

equal_templates.

template <class... Args>

using type = see below;
Definition: TT<Args. . .> if there is exactly one class template TT with the highest priority among all the class
templates defined in each instantiation of equal templates in ETs that is able to be instantiated with
Args. .., or otherwise, the expression is ill-formed. For any type template TT1 and TT2 defined in any
instantiation of equal templates in the template parameter pack ETs, the priority of the two type templates is
defined as the reverse ordering of the smallest index in ETs where the type template is a template parameter of the

instantiation of equal_ templates.

	A Generic Library for Compile-time Routing
	1 Introduction
	2 Motivation
	2.1 Type Selection
	2.2 Path Selection
	2.2.1 A Motivating Problem
	2.2.2 Solve with if constexpr
	2.2.3 Solve with the Proposed Library

	3 Technical Specification
	3.1 Header <utility> synopsis
	3.2 Class template applicable_template

