P1709R0: Graph Data Structures

Date: 2019-06-17 (Pre-Cologne mailing): 10 AM ET
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG19, WG21

Authors: Phillip Ratzloff (SAS Institute)

Richard Dosselmann (U of Regina)
Michael Wong (Codeplay)

Contributors: N/A

Emails: phil.ratzloff@sas.com

dosselmr@cs.uregina.ca
michael@codeplay.com

Reply to: phil.ratzloff@sas.com

Introduction

This document proposes the inclusion of a (general) graph data structure in the C++
containers library to support machine learning (ML), as well as all other applications. ML is a
large and growing field, both in the research community and industry. Artificial intelligence
(Al), a subset of ML, has received a great deal of attention in recent years.

A graph G = (V,E) is a set of vertices, points in a space, and edges, links between these
vertices. Edges may or may not be oriented, that is, be directed or undirected, respectively.
Both static and dynamic implementations of a graph exist, using a (adjacency) matrix,
(adjacency) array and (adjacency) list, each having the typical advantages and disadvantages
associated with static and dynamic data structures. Given that a static implementation of a
graph employs a matrix, a structure that is currently under development, this document
proposes a dynamic implementation of a graph.

This paper starts the discussion on Graph Data structure with a proposed example interface.
Though we might modify that interface significantly as we continue discussion.

mailto:phil.ratzloff@sas.com
mailto:dosselmr@cs.uregina.ca
mailto:michael@codeplay.com
mailto:phil.ratzloff@sas.com

Revision History

N/A

Motivation

A graph data structure, used in ML and other scientific domains, as well as industry and
general programming, does not presently exist in the C++ standard. In ML, a graph forms the
underlying structure of an Artificial Neural Network (ANN). In a game, a graph can be used to
represent the map of a world. In business, an Entity Relationship Diagram (ERD) or Data Flow
Diagram (DFD) is a graph. In the realm of social media, a graph represents a social network.

Impact on the Standard

This proposal is a pure library extension.

Design Proposals

Background and Goals

Graphs are used in a wide variety of situations. To meet the varied demands there are a
number of different characteristics with different behavior and performance to meet
requirements. This section identifies the different types of graphs and introduces the goals of
this proposal. The remaining sections provide the details.

The characteristics that are often used to describe graphs include the following:
1. Property Graphs: The user can define properties, or values, on edges, vertices and the
graph itself.
This proposal supports optional user-defined types for edge, vertex and graph
types. Any C++ type is allowed, including class, struct, union, tuple, enum and scalers.
2. Directed (forward-only and bi-directional) and Undirected Graphs: Edges can
represent a direction, in-vertex and out-vertex, or can be undirected. Directed graphs
also have a designation of forward-only or bi-directional.
This proposal supports directed forward-only, directed bi-directional, and
undirected graphs.

3. Adjacency List | Adjacency Array | Adjacency Matrix: How edges are
represented/implemented has an impact on performance when modifying the graph or
executing algorithms, often conflicting with each other. These are design decisions made
by developers for their situation.

An Adjacency List uses linked lists to store edges and adapts to change well, an
Adjacency Array stores all edges in a single “array” (e.g. std::vector) with a balance
between change and good performance, and Adjacency Matrix stores all combinations
of edges in a dense 2-dimensional array for performance and space advantages for
dense graphs.

All forms are supported in this proposal.

4. Single-edge and Multi-edge Graphs (multigraphs): Each pair of vertices can have
one or more edges between them.

This proposal supports both single- and multi-edge graphs. No special attention
is given to prevent multiple edges between two vertices. The Adjacency Matrix prevents
multiple edges by its nature.

5. Acyclic and Cyclic Graphs: Cyclic graphs include paths that trace one or more edges
from one vertex back to itself, while acyclic graphs have no such paths.

This proposal supports both acyclic and cyclic graphs. No special attention is
given to prevent cyclic graphs. Detection of cycles requires the Connected Components
(undirected graphs) or Strongly Connected Components (directed graphs) algorithms.

The goal of any graph library is to be able to be as flexible as possible, making necessary
compromises as needed. A challenge is to manage the list of various combinations, while
recognizing that some are not possible.

This proposal recognizes all common capabilities and representations of graphs and
provide the user the ability to select all reasonable combinations that do not conflict. It also
enables the user to extend the vertex, edge and graph implementations beyond those provided.
For instance, the user can store vertices in a different container than those supplied by the
standard by defining their own vertex set.

Attention is also given to keeping object sizes to the minimum needed to provide the
required functionality. For instance, edges in an adjacency matrix should only be as big as the
user-defined edge value, and for an adjacency array should be the size of user-defined edge
value and in and out vertex references (vertex_id or pointer).

A common interface between different graphs is also a priority whenever possible,
allowing for easier learning and transitioning between different characteristics of graphs. A
noticeable difference in type and function names exists between directed and undirected graphs
by design to reflect the different nature of the graphs.

Common algorithms will be provided, and it is expected more will be added over time. Features
for common functionality will be provided, such as general breadth-first search (BFS), depth-first
search (DFS), [and general visitor]. All algorithms should work with different forms of graphs, as
described above, with little or no modification. Notable exceptions include attempting to use an
algorithm that requires a directed graph on an undirected graph, or an algorithm that requires a

bi-directional algorithm on an undirected or forward-only graph. [These characteristics point
toward Concepts that may be useful for graphs.]

Examples

This section introduces the capabilities of the graphs using a simple example to copy one graph
to another, reversing the edges.

An adjacency list is defined where vertices have a name property and edges have a weight. A
property can also be defined for the adjacency list. The default is forward-only and uses
singly-linked lists to store the outgoing edges on each vertex, and uses a vector to store the
vertices. These can all be overridden.

name value; // struct name value { string name; }

using name_ t
using weight t = int;

using GL adjaceny list<name t, weight t>;
std::vector<string> vertex values = {"a", "b", "c", "d", "e", "f"};
std::vector<tuple<vertex id, vertex id, weight t>> edge values = {
// {in vertex id, out vertex id, weight}
{o, 1, 2%, {1, 2, 3}, {2, 3, 5}, {4, 3, 1}, {3, 5, 10}, {3, 0O, 3},
{0, 5, 13}, {5, 4, 1}, {1, 4, 2}, {4, 2, 3}, {5, 1, 4}};

Creating an adjacency list graph
GL g;
for (autoé& label : vertex values)
g.create vertex(label);
for (auto& uv : edge values)
g.create_ edge (get<0>(uv), get<l>(uv), get<2>(uv));

Creating a new adjacency list graph with edge directions reversed. user_value() is name_t for
vertices and weight_t for edges.
GL rev;
for (auto& [id, u] : g.vertices())
rev.create vertex(u.user value());
for (auto& uv : g.edges())
rev.create edge(uv.out vertex id(), uv.in vertex id(), uv.user value());

Reversing the edges for an adjacency array is a little different because outgoing edges for a
vertex need to be added together. To accomplish that we need to be able to traverse the
incoming edges to get the source vertices, requiring a new definition of the adjacency list.
using GL2 = adjaceny list<name t, // vertex value type

weight t, // edge value type

empty value, // graph value

edge type directed bidir, // bidirectional

vector vertex set proxy> // vertex in vectors

We can now reverse the edges when copying to an adjacency array.
GL2 g;
// (same code to create the G2 graph)

using GA = adjaceny array<name t, weight t>;
GA rev;
for (auto& [id, v] : g.vertices()) {
rev.create vertex(v.user value());
for (auto& uv : v.in edges())
rev.create edge(uv.out vertex id(),uv.in vertex id(),
uv.user value());

}

Reversing the edges on an adjacency matrix is a different concept because all edges exist
between vertices. Creation of the adjacency matrix requires knowing the number of vertices
when it is created, and all vertices and edges are created when the graph is created. Copying
the graph is simply copying the vertex & edge values.

GM rev(g.vertices().size());

for (auto& [id, v] : g.vertices()) {
auto& [rev_id, rev_v] = *rev.find(id);
rev_v.user value() = v.user value();

}
for (auto& uv : g.edges()) {
auto& rev_uv = *rev.find(uv.out vertex id(), uv.in vertex id());

rev_uv.user value() = uv.user value();

}

All edges in rev that don’t have a matching edge in g will have a default weight of 0.

Experimental Function Interface and Examples

This section is identical to the previous section except that it uses a free function interface
instead of a object-oriented interface. This may be useful to support function composition that is
coming with the Range v3 functionality in C++20. Only one of the interfaces should exist, not
both.

This section introduces the capabilities of the graphs using a simple example to copy one graph
to another, reversing the edges.

An adjacency list is defined where vertices have a name property and edges have a weight. A
property can also be defined for the adjacency list. The default is forward-only and uses

singly-linked lists to store the outgoing edges on each vertex, and uses a vector to store the
vertices. These can all be overridden.
using name_ t = std::string;

using weight t int;

using GL adjaceny list<name t, weight t>;
std::vector<string> vertex values = {"a", "b", "c", "d", "e", "f"};
std::vector<tuple<vertex id, vertex id, weight t>> edge values = {
// {in vertex id, out vertex id, weight}
{0, 1, 23y, {1, 2, 3%}y, {2, 3, 5}, {4, 3, 1}, {3, 5, 10}, {3, 0, 33},
{0, 5, 1}, {5, 4, 1}, {1, 4, 2}, {4, 2, 3}, {5, 1, 4}};

Creating an adjacency list graph
GL g;
for (autoé& label : vertex values)
create vertex(g, label);
for (auto& uv : edge values)
create_edge (g, get<0>(uv), get<l>(uv), get<2>(uv));

Creating a new adjacency list graph with edge directions reversed. user_value() is name_t for
vertices and weight_t for edges.
GL rev;
for (auto& [id, u] : vertices(qg))
create vertex(rev, user value(u));
for (auto& uv : edges(g))

create edge (rev, out vertex id(uv), in vertex id(uv), user value(uv));

Reversing the edges for an adjacency array is a little different because outgoing edges for a
vertex need to be added together. To accomplish that we need to be able to traverse the
incoming edges to get the source vertices, requiring a new definition of the adjacency list.
using GL2 = adjaceny list<name t, // vertex value type

weight t, // edge value type

empty value, // graph value

edge type directed bidir, // bidirectional

vector vertex set proxy> // vertex in vectors

’

We can now reverse the edges when copying to an adjacency array.
GL2 g;
// (same code to create the G2 graph)

using GA = adjaceny array<name t, weight t>;
GA rev;
for (auto& [id, v] : vertices(g)) {

create vertex(rev, user value(v));

for (auto& uv : in edges(v,qg))

create edge(rev, out vertex id(uv),in vertex id(uv),
user value (uv));

}

Reversing the edges on an adjacency matrix is a different concept because all edges exist
between vertices. Creation of the adjacency matrix requires knowing the number of vertices
when it is created, and all vertices and edges are created when the graph is created. Copying
the graph is simply copying the vertex & edge values.

GM rev (vertices(g) .size());
For (autoé& [id, v] : vertices(qg)) {
auto& [rev id, rev v] = *find vertex(rev, id);
user value(rev_v) = user_value(v);

}

for (auto& uv : edges(g)) {
autoé& rev uv = *find out edge(rev, out vertex id(uv), in vertex id(uv));
user value(rev_uv) = user value (uv);

}

All edges in rev that don’t have a matching edge in g will have a default weight of 0.

Adjacency Types

The different types of adjacency graphs are determined by the physical organization of edges in
memory. There is a tradeoff between adding and removing edges/vertices and performance

when visiting the graph.

Adjacency List Adjacency Array Adjacency Matrix
Out-edges storage | Singly- or doubly- Array for all edges Array
linked list (contiguous memory) | (contiguous
memory)
In-edges storage Single- or doubly- Single- or doubly- Array
(bi-directional only) | linked list linked list (noncontiguous
memory)
Undirected edges Single- or doubly- n/a n/a
storage linked list
Add vertices o(1) o(1) n/a
Remove vertices o1 + |e]) n/a n/a
O(log V + |e|)

Add edges o(1) 0o(1) 0o(1)
All out edges for a
vertex must be added
at once

Remove edges O(n) for singly linked | n/a n/a
O(1) for doubly linked

Incoming edges are always in non-contiguous memory. They are kept in a linked list for
adjacency list and adjacency array.

Graph Parameters

All adjacency types are defined as a templatized graph class used to define and customize the
graph. Their usage is clearer in the context of the adjacency types in the following sections. The
graph prototype is defined as:

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,
class A>

class graph;

Parameter | Valid Values Description

ADJ adj_list_type The adjacency type.
adj_array_type
adj_matrix_type

GV (user-defined) The graph value type defined by the
user. It can be most valid C++ value
type including class, struct, tuple,
union, enum, array, reference or
scalar value. If no value is needed
then the empty_value struct can be
used. See the User Values section
for more information.

VvV (user-defined) The vertex value type. (See GV.)

VSP

vector_vertex_set proxy
deque_vertex_set_proxy
ordered_map_vertex_set proxy
unordered_map_vertex_set_proxy
(user-defined)

The vertex set proxy used to define
the container used to store vertices.
The user can define their own vertex
set as long as they support the
common interface.

EV (user-defined) The edge value type. (See GV.)

EDIR edge_type_directed_fwddir Edge directionality. fwddir supports
edge_type_directed_bidir directed outgoing edges, bidir
edge_type_undirected supports incoming and outgoing

edges, and undirected supports
undirected edges. Bidir is a superset
of fwddir. This has the biggest impact
on the interface available.

ELNK edge_link_double Use doubly- or singly-linked lists for
edge_link_single edges. This only applies when linked
edge_link_none lists are used.

A allocator<char> A standard C++ allocator. Rebind is

used to redefine for both vertex and
edge types.

Additional template parameters are used internally elsewhere in other classes. Their definition is

included here for completeness.

mem_movable

Parameter Valid Values Description
VMEM mem_fixed Identifies whether vertices are fixed or
mem_movable movable in memory. Determines whether a
pointer or identifier is used to reference a
vertex.
EMEM mem_fixed Identifies whether edges are fixed or

movable in memory. Determines whether a
pointer or identifier is used to reference an
edge.

Adjacency List

An adjacency list is defined by edges stored in linked list.

template <class VV = empty value,
class EV = empty value,
class GV = empty value,

class EDIR = edge type directed fwddir,
class ELNK = edge link single,
class VSP = vector vertex set proxy,
class A = allocator<char>>
using adjaceny list = graph<adj list type, GV, VV, VSP, EV, EDIR, ELNK, A>;

Adjacency Array

An adjacency array is defined by edges stored in a growable array (e.g. or std::vector).
template <class VV = empty value,

class EV = empty value,

class GV = empty value,

class EDIR = edge type directed fwddir,

class ELNK = edge link single,

class VSP = vector vertex set proxy,

class A = allocator<char>>
using adjaceny array = graph<adj array type, GV, VV, VSP, EV, EDIR, ELNK, A>;

Adjacency Matrix

An adjacency array is defined by edges stored in a 2-dimensional square array, where the size
of the dimensions are the number vertices.

The number of vertices is passed during construction of the adjacency matrix when all vertices
and edges are also constructed. Vertices and edges cannot be created or erased after the
graph is constructed. See the graph class section for adjacency matrix for more information.

template <class VV = empty value,
class EV = empty value,
class GV = empty value,

class VSP = vector vertex set proxy,
class A = allocator<char>>
using adjaceny matrix = graph<adj matrix type,

GV,
Vv,
VSP,
EV,
edge type directed bidir,
edge link none,
A>;

User Values (a.k.a. Properties)

User-defined types can be used to define values for a vertex, edge and graph. Given the
following definition:

struct name_value {
string name;

name value () = default;

name value (name value consté&) = default;

name value& operator=(name value consté&) = default;
name value (string consté& s) : name(s) {}

name value (string&& s) : name(move(s)) {}

}i

struct weight value {
int weight = 0;

weight value () = default;
default;
weight value& operator=(weight value consté&) = default;

weight value (weight value consté)

weight value (int consté& w) : weight(w) {}

}r

using G = adjacency list<name value, weight value>;

G g;

auto& [iter, successful] = g.create vertex(name ("a"));
auto& [uid, u] = *iter;

auto& [vid, v] = *g.create vertex(name("b")).first;

auto& uv_iter g.create edge (uid, vid, weight value (42));

auto& uv = *iter;
string nm = u.name; // nm == "a"
int w = uv.weight; // w == 42

A class is also usable. There’s no limit on the number of values in the struct used. The
requirements are that it be default constructible, copy constructible and assignable. Move
constructible is also supported.

Non-struct & non-class types can also be used, including scaler, array, union and enum. In
those cases they are assigned the member name of “value” on the vertex.

using weight_t = int;

using G = adjacency list<name value, weight t>;

(create vertices u & v as before)

auto& uv_iter g.create edge (uid, vid, 42);

auto& uv = *uv_iter;

int w u.value; // w == 42

int w2 = u.user value(); // w2 == 42

The reason for using “value” is that vertex inherits from it's property value and some types, like
“int”’, are not a valid base class, nor are union, array, union or enum which all use “value”. The
benefit is that empty-base optimization is used when no value is needed.

The empty_value struct is used when no value is needed.
struct empty value {};

Here is a simplified version of the vertex class to demonstrate how the value is defined as well
as the graph_value_needs_wrap<> definition.
template <class ADJ, class VV, class VMEM, class EV, class EDIR, class ELNK,
class EMEM>
class vertex
public conditional t<graph value needs wrap<VV>::value,
graph value<vv>, VvV>
{ .1}

template <class T>
struct graph value needs wrap
integral constant<bool,
is_scalar<T>::value || is_array<T>::value ||
is_union<T>::value || is_reference<T>::value> {};

The benefit of using inheritance is that no memory is used when empty_value is used because
of the empty base optimization.

Directed and Undirected

Forward-only, bidirectional and undirected characteristics of a graph have the biggest impact on
the interface of graph, vertices and edges.

Forward-only graphs support outgoing edges, iterators and related functions. Bidirectional
graphs extend forward-only graphs by adding functionality for incoming edges. Here is an
example using a vertex.

template<.., edge_type directed fwddir, .>
class vertex {

using out iterator = ..;

using const out iterator = ..;

out edge list& out edges();

const out edge listé& out edges();

template<.., edge_type directed bidir, .>
class vertex {

using out iterator = ..;

using const out iterator = ..;

out edge list& out edges();

const out edge list& out edges();

using in iterator = ..;

using const in iterator = .;

in edge list& in edges();
const _in edge listé& in_edges();

}i

Undirected graphs have edges but without any directionality.
template<..,, edge_ type undirected, ..>
class vertex {

using iterator = ..;

using const iterator = ..;

edge listé& undir edges();

const edge listé& undir edges();

}i

In an effort to keep complexity and confusion to a minimum, class definitions in this document
will have sections devoted to common functionality (e.g. applies to all forms of directionality), as
well as a section for each form of directionality (forward-only, bidirectional and undirected).

Namespace

The graph classes are kept in the std::graph namespace.

Common types and functions defined in the namespace are as follows.
namespace std::graph {

using index t = ptrdiff t;

using vertex id = index t;

using edge id index t;

struct empty value {}; // empty graph|vertex|edge value

struct adj list type {};
struct adj array type {};
struct adj matrix type {};

struct edge type directed fwddir {};
struct edge type directed bidir {};
struct edge type undirected {};

struct edge link none {};
struct edge link single {};
struct edge link double {};

struct mem fixed {};
struct mem movable {};

struct weight value {
int weight = 0;
weight value () = default;
weight value (weight value consté&) = default;
weight value& operator=(weight value consté&) = default;
weight value (int consté& w) : weight(w) {}
}r

struct name value {
string name;

default;
default;
name value& operator=(name value consté&) = default;

name value ()

name value (name value consté&)

name value (string consté& s) : name(s) {}
name value (string&é& s) : name(move(s)) {}

}i

// functions
static constexpr vertex id null vertex id();
static constexpr edge id null edge id();

} // namespace std::graph

The template aliases for adjacency types are also included, as shown in the Adjacency Types
section.

Graph Classes

The graph classes include graph, vertex, edge, vertex set (collection of vertices), and edge set.
An edge set may be a collection of all edges (e.g. adjacency array and adjacency matrix) or a
definition for the set of edges on a vertex (e.g. adjacency list).

The class definitions in this section show the functionality available for each class, with sections
identifying types and functions available depending on the adjacency type (common,
forward-only, directed, undirected).

All functions shown are those available for use. Because the implementation may use
inheritance to compose the functionality, the actual implementation may be in another class that
is derived from.

Vertices

Vertices have the ability to store any user-defined type. A vertex can have outgoing edges for
forward-only graph, outgoing and incoming edges for bidirectional graphs, and undirected
edges for undirected graphs.

Erasing a vertex will automatically erase all edges associated with it.
The proposed form of a vertex is:

template <class ADJ,
class VV, class VMEM,
class EV, class EDIR,
class ELNK, class EMEM>
class vertex : public conditional t<graph value needs wrap<VV>::value,
graph value<vv>,
V>
, public out edge list<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>
, public in edge list<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>
, public undir edge list<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>

public:
using user value type = VV;
using vertex type = vertex<ADJ, VV, VMEM, EV, EDIR, EMEM, ELNK>;
using vertex value type = pair<const vertex id, vertex type>;

using base user value type = conditional t<
graph value needs wrap<VVv>::value,
graph value<Vv>,VV>;

using edge user type EV;
edge<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;

using edge value type = edge type;

using edge type

vertex () = default;

vertex (user value type consté& value) : base user value type(value) ({}
vertex (user value typeé&& value) : base user value type (move(value)) {}
user value typeé& user value();

user value type consté& user value() const;

//>>> Forward-only and Bidirectional

public:
using out edge list type = out edge list<ADJ,VV,VMEM, EV,EDIR, ELNK, EMEM>;
out edge listé out edges();
out edge list const& out edges () const;

//>>> + Bidirectional

public:
using in edge list type = in edge list <ADJ,VV,VMEM,EV,EDIR,ELNK, EMEM>;
in edge listé& in _edges();

in edge list const& in edges () const;

//>>> Undirected
public:
using undir edge list type
= undir edge list <ADJ,VV,VMEM, EV,EDIR, ELNK, EMEM>;
undir edge listé edges () ;
undir edge list const& edges() const;

Edge containers all support the same behavior. Valid iterator operations is dependent on the
underlying container (linked list or vector) used to store the edges. The following example
shows the out edge list, and the same functionality is also available for in_edge list and
undir_edge_list.

template <class ADJ,
class VV, class VMEM,
class EV, class EDIR, class ELNK, class EMEM>
class out_edge list {
public:
class iterator;
class const iterator;

size t size() const;
template<class G> iterator begin () ;

template<class G> const iterator begin() const;
template<class G> const iterator cbegin() const;

iterator end () ;
const iterator end() const;
const iterator cend() const;

}i

Edges

Edges can contain any user-defined type as explained in the User Values section.

All edges are either directed or undirected as described in the section for Directed and
Undirected.

template<class ADJ,
class VV, class VMEM,
class EV, class EDIR, class ELNK, class EMEM>
class edge : conditional t<graph value needs wrap<EV>::value,
graph value<EV>, EV>
, public Out_vertex_link<ADJ,VV,VMEM,EV,EDIR,ELNK,EMEM>
, public in vertex 1ink<ADJ,VV,VMEM,EV,EDIR,ELNK, EMEM>
, public Out_edge_list_link<ADJ,VV,VMEM,EV,EDIR,ELNK,EMEM>
, public in edge list 1link<ADJ,VV,VMEM,EV,EDIR,ELNK, EMEM>
{
public:

using vertex type vertex<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;

using vertex value type = pair<const vertex id, vertex type>;

using user value type = EV;
using edge type = edge<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;
using edge value type = edge_ type;

using base user value type = conditional t<graph value needs wrap<EV>::value,
graph value<EV>, EV>;

edge () = default;

edge (vertex value typeé& u, vertex value typeé& v);

edge (vertex value typeé& u, vertex value typeé& v,
user value type consté& value);

edge (vertex value typeé& u, vertex value typeé& v,
user value typeé&& value);

user value typeé& user value();
user value type consté& user value () const;

//>>> Forward-only and Bidirectional
public:
vertex typeé& out vertex();
vertex type consté& out vertex() const;

//>>> + Bidirectional

public:
vertex typeé& in vertex();
vertex type consté& in vertex() const;

//>>> Undirected

public:
vertex typeé& vertexl () ;
vertex type consté& vertexl () const;

vertex typeé& vertex2();

vertex type consté& vertex2() const;

}s

Vertex Set

A vertex set contains the vertices of a graph and provides a common interface to standard
containers to add, delete find and iterate across vertices. Performance of those operations is
dependent on the underlying container. lterator capabilities inherit the capabilities of the
underlying container. The user can create a vertex set using their own container (e.g. a fast
hashed container) as long as they implement the full interface.

Vertex types are defined as

using user value type = VV;
vertex<ADJ, VV, VMEM, EV, EDIR, EMEM, ELNK>;
pair<const vertex id, vertex type>;

using vertex type

using vertex value type

where
e user value type is the user-defined value type stored in each vertex. It defaults to
empty_value.
vertex type is the fully qualified type of a vertex class.
vertex value type is the vertex value stored in the vertex set. It includes a uniform
description that is used in vector-like and mapped containers.

vertex value type provides a consistent structure for algorithms, makes it easier to switch
to a different vertex set for evaluation, and guarantees the vertex id is always known for
a vertex. A vertex id value is automatically assigned to a vertex, though the user can
override the value when adding the vertex.

vertex_id is an integer that uniquely identifies a vertex and is guaranteed to be unique. Built-in
support for vertex id will be provided for the purposes of searching and removing vertices,
as well as assigning data to new vertices (either by a user or automatically). The same
interface is used for all vertex sets, regardless of the underlying container types.

The proposed form of the vertex set (with an underlying vector implementation) is:

template<class ADJ,
class VV,
class EV,
class EDIR,
class ELNK,
class EMEM,
class A>

class vector_vertex_ set ({

using vertex ref = vertex id;

using memory movable type = mem movable;

using vertex user type = VV;

using vertex type = vertex<ADJ,VV,memory movable type,
EV,EDIR, ELNK, EMEM>;

using value type = pair<const vertex id, vertex type>;

using allocator type = typename allocator traits<typename A>::

template rebind alloc<value type>;

using container type = vector<value type, allocator type>;
using size type = typename container type::size type;
using iterator = typename container type::iterator;

using const iterator = typename container type::const iterator;
vector vertex set() = default;

vector vertex set(allocator type alloc);

size type size() const;

bool empty () const;
iterator begin () ;

const iterator begin() const;
const iterator cbegin() const;
iterator end () ;

const iterator end() const;
const iterator cend() const;

iterator find(vertex id id);

const iterator find(vertex id id) const;

//>>> Adjacency List and Adjacency Array
pair<iterator, bool>
create (vertex id id = graph traits type::null vertex id());

pair<iterator, bool>
create (vertex user type consté& value, vertex id id = null vertex id());

pair<iterator, bool>
create (vertex user type&é& value, vertex id id = null vertex id());

void erase(iterator it);
void erase (vertex id id);
//<<< Adjacency List and Adjacency Array

void resize(size t n);
void reserve(size t n);

private:
container type vertices ;

}i

vertex_set Proxy

A vertex set proxy is used to reduce compile-time dependencies and support user-defined
containers and is used by the graph class. A full example of the proxy for the vector_vertex_set
is
struct vector vertex set proxy {
using memory movable type = mem movable;

template <class ADJ,
class VV,
class EV,
class EDIR,
class ELNK,
class EMEM,
class A>
using vertex set = vector vertex set<ADJ, VV, EV, EDIR, ELNK, EMEM, A>;
}i

Vector vertex set proxy IS the type passed in the VSP parameter of the graph.

vertex_set Types

vertex sets are defined by the container type it uses to store vertices, with different
tradeoffs:

Feature vector deque ordered map unordered map

Storage Array (dense) Block array Node (sparse) Node (sparse)
(dense)

Traversal 0o(1) 0o(1) o(1) o(1)

In/out vector vertex_id pointer pointer pointer

type on edge

Find vertex_id | O(1) o(1) O(log n) 0(>1)
Find edge o(n) o(n) o(n) o(n)
Add vertex o(1) o(1) O(log n) o> 1)
Add edge o(1) o(1) o(1) o(1)

Erase vertex O(1) + O(n) O(1) + O(n) O(log n) + O(n) O(>1) + O(n)

(+ edges)

Erase edge o(1) o(1) o) o)

The invariant vertices[n].vertex id == n is used by vector vertex set and
deque vertex set. This implies several things to achieve this:

1. If a new vertex is added with a specific vertex_id greater than the last vertex_id, then
new null vertices will be allocated to fill the gap. For instance if 10 vertices have been
created (vertex_id range 0..9), and a new vertex is added with vertex_id=20, then space
is allocated for vertices with vertex_id range 10..19 before the new vertex is added.
null_vertex_id() is assigned to the extra vertices to indicate they haven’t been assigned
yet.

2. Deletion of a vertex causes its destructor to be called and it's vertex id to be set to
null_vertex_id(). The size of the container doesn’t change because erasing it from the
container would invalidate the invariant.

3. All functions for find, create and erase need to behave consistently across all
vertex_sets. For instance, find needs to fail when a vertex exists with
vertex_id==null_vertex_id(), even though it physically exists. This is different from map,
where vertex_id will never be null_vertex_id() and physical existence defines failure or
success for find.

O(1) Traversal

Achieving O(1) traversal has different requirements for the underlying container used to store
vertices in the vertex set. When using map, the location of the vertex remains stable for the life
of the vertex so a pointer to the vertex can be stored for the in and out vertices on an edge.
When a vector is used, a vertex’s location is not stable. It will be moved in memory when the
internal array needs to be resized as new vertices are added. In that case, the vertex_id is the
only stable option to use for an edge’s in and vertices and is used to find the vertex. vertex_id
can also be used for map but incurs a O(log n) penalty when finding the vertex during traversal.

It's possible to accommodate both vector and map requirements for O(1) traversal by storing
either a vertex_id or pointer to a vertex for the in and out vertices on an edge. The following
definitions on a vertex set allows an edge to adapt to either a vertex_type* (shown) or vertex_id.
The helper functions provide conversions to/from edge_vertex_ref and vertex references and
vertex_id’s.

using edge vertex ref = vertex type*; // or, = vertex id

edge vertex ref to edge vertex ref (vertex iterator);
edge vertex ref to edge vertex ref (vertex type&);

vertex typeé& get edge vertex(edge vertex ref);
vertex type consté& get edge vertex(edge vertex ref) const;

vertex id get vertex id(edge vertex ref) const;

Supporting unordered_map is identical to map. deque can support both vertex id or
vertex_type* because the vertex won’t move in memory (using iterators will not work in place of
a pointer because they are invalidated in MSVC when anything is added or removed from the
deque).

With a traversal time guarantee of O(1), the use of different vertex sets only impacts time for
adding, removing and finding elements. It also has an impact on memory consumption. vector is
the most compact storage, followed by deque, assuming few gaps in vertex_id usage. The
advantage of using a deque over a vector is that it doesn’'t need to copy all vertices when
expanding the container; it just adds a new block.

The use of map and unordered_map for vertex sets would be most useful when an integer id
already exists for a vertex and is sparsely assigned. In all other cases a vector or deque vertex
set should be sufficient.

Edge Set

An edge set is used to define the type of the collection of edges on a vertex (outgoing, incoming
or undirected), and optionally provided storage of the edges in the case of an adjacency array
and adjacency matrix. Where the edges are actually stored is internal to the implementation and
should not affect the interface.

The edge set is ultimately responsible to take care of adding and deleting an edge, either
directly or coordinating with the edge’s vertices. It is also responsible for providing a way to
iterate through all edges in the graph.

It's expected that the user will use the mirrored functions for adding and deleting edges in the
graph class for convenience and a simpler interface, rather than using them directly hear.
Iterating through edges would be done by using the begin/end functions because it is natural to
do so, as an edge set appears to be a container.

template <class VV, class VSP, class EV, class ELNK, class A>

class edge_set<adj array type,VV,VSP,EV,edge type directed fwddir,ELNK,A> {
// types

public:

using ADJ adj array type;
using EDIR = edge type directed fwddir;

using EMEM = mem movable;

using allocator type = A;
using memory movable type = EMEM;

using vertex user type vV;
using vertex type = vertex<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;

using vertex value type

pair<const vertex id, vertex type>;

EV;
using edge type = edge<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;
using edge value type

using edge user type

edge type;

class iterator;
class const iterator;

// Construction/Destruction
public:

edge _set () = default;

edge set (allocator type alloc);

template<class G> iterator begin () ;
template<class G> const iterator begin() const;
template<class G> const iterator cbegin() const;

iterator end () ;
const iterator end() const;
const iterator cend() const;

template<class G> void erase edge (G& g, vertex id uid, vertex id vid);

//>>> forward-only and bidirectional
class out iterator;
class const out iterator;

template<class G>
out iterator create edge(G& g, vertex value type& u, vertex value type& v);

template<class G>

out iterator create edge(G& g, vertex value type& u, vertex value type& v,
edge user type consté& value);

template<class G>

out iterator create edge(G& g, vertex value type& u, vertex value type& v,
edge user type&& value);

//>>> undirected
class undir iterator;
class const undir iterator;
Undir iterator create edge (vertex id uid, vertex id vid);
Undir iterator create edge (vertex id uid, vertex id vid,
edge user type consté& value);
Undir iterator create edge(vertex id uid, vertex id vid,

edge user type&& value);

}i

The edge lists on the vertex are described in the description of vertex in this document.

Graph

The proposed form of the graph container for the adjacency list and adjacency array is:

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,
class A>
class graph : public conditional t<graph value needs wrap<GV>::value,
graph value<GV>, GV>

using base t = conditional t<graph value needs wrap<GV>::value,
graph value<GV>,
GV>;

using graph user value = GV;

using allocator type = A;

3

using vertex user type
using vertex type = vertex<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;
using vertex value type = pair<const vertex id, vertex type>;

using edge user type = EV;
using edge type = edge<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;
using edge value type = edge type;

using vertex set =
typename VSP::template vertex set<ADJ, VV, EV, EDIR, ELNK, EMEM, A>;

using vertex iterator = typename vertex set::iterator;

using const vertex iterator = typename vertex set::const iterator;
using edge_ set = typename edge set<ADJ, VV, VSP, EV, EDIR, ELNK, A>;
graph () ;

graph (allocator type alloc);

(
(
graph (graph _user type const& value, allocator type alloc=allocator type());
graph (graph user typeé&& value, allocator type alloc=allocator type());

(

graph (graph consté&) ;
allocator type allocator() const;
//

// vertices

//

vertex seté& vertices () ;
vertex set consté& vertices() const;

void resize(size t n);

void reserve(size t n);

vertex iterator vertex begin();

vertex iterator vertex end();

const vertex iterator vertex begin() const;
const vertex iterator vertex end() const;
const vertex iterator vertex cbegin() const;
const vertex iterator vertex cend() const;

pair<vertex iterator, bool> create vertex(vertex id=null vertex id()):;

pair<vertex iterator, bool> create vertex(vertex user type consté,
vertex id id = null vertex id());

pair<vertex iterator, bool> create vertex(vertex user type&é,
vertex id id = null vertex id());

bool erase vertex(vertex id);

bool erase vertex(vertex iterator);

vertex iterator find vertex(vertex id);
const vertex iterator find vertex(vertex id) const;

//
// All Edges
//

using edge iterator

typename edge set::iterator;
class const edge iterator = typename edge set::const iterator;

edge iterator edge begin(); // sentinel
const edge iterator edge begin() const;
const edge iterator edge cbegin() const;

edge iterator edge _end(); // sentinel
const edge iterator edge end() const;
const edge iterator edge cend() const;

edge iterator find edge(vertex iterator, vertex iterator);
edge iterator find edge(vertex id, vertex id);

edge iterator create edge(vertex typeé& u, vertex type& v);

edge iterator create edge(vertex typeé& u, vertex type& v,
edge user_ type constég);

edge iterator create edge(vertex type& u, vertex type& v,
edge user typed&é&);

edge iterator create edge(vertex iterator, vertex iterator);

edge iterator create edge(vertex iterator, vertex iterator,
edge user type consté&);

edge iterator create edge(vertex iterator, vertex iterator,
edge user type&é&);

edge iterator create edge(vertex id, vertex id);
edge iterator create edge(vertex id, vertex id, edge user type consté);
edge iterator create edge(vertex id, vertex id, edge user typeé&é&);

void erase edge (edge iterator);
void erase_edge (vertex iterator, vertex iterator);

void erase edge (vertex id, vertex id);

//>>> Forward-only and Bidirectional

//

// Out Edges

//

using out edge iterator = typename edge set::out iterator;

using const out edge iterator typename edge set::const out iterator;
out edge iterator out edge end(); // sentinel
const out edge iterator out edge end() const;

out edge iterator create out edge (vertex type& u, vertex type& v);

out edge iterator create out edge (vertex type& u, vertex type& v,
edge user type constg);

out edge iterator create out edge (vertex type& u, vertex type& v,
edge _user type&é&);

out edge iterator create out edge(vertex iterator, vertex iterator);

out edge iterator create out edge(vertex iterator, vertex iterator,
edge user_ type constg);

out edge iterator create out edge(vertex iterator, vertex iterator,
edge user typed&é&);

out edge iterator create out edge(vertex id, vertex id);

out edge iterator create out edge(vertex id, vertex id,
edge user type consté&);

out edge iterator create out edge (vertex id, vertex id,
edge user type&é&);

void erase_ edge (out edge iterator);

out edge iterator find out edge(vertex iterator, vertex iterator);
out edge iterator find out edge(vertex id, vertex id);

//>>> + Bidirectional

//

// In Edges

//

using in edge iterator = typename edge set::in iterator;

using const in edge iterator = typename edge set::const in iterator;

in edge iterator in edge end(); // sentinel
const in edge iterator in_edge end() const;

in edge iterator create in edge (vertex type& u, vertex type& v);

in edge iterator create in edge (vertex type& u, vertex type& v,
edge user type consté&);

in edge iterator create in edge (vertex type& u, vertex type& v,
edge user type&é&);

in edge iterator create in edge (vertex iterator, vertex iterator);

in edge iterator create in edge (vertex iterator, vertex iterator,
edge user type consté&);

in edge iterator create in edge (vertex iterator, vertex iterator,
edge user type&é&);

in edge iterator create in edge (vertex id, vertex id);

in edge iterator create in edge (vertex id, vertex id,
edge user type consté&);

in edge iterator create in edge (vertex id, vertex id,
edge user type&é&);

void erase edge (in_edge iterator);

in edge iterator find in edge(vertex iterator, vertex iterator);

in edge iterator find in edge(vertex id, vertex id);

out edge iterator to out edge iterator(in edge iterator);

const out edge iterator to out edge iterator(const in edge iterator);

in _edge iterator to_in edge iterator (out edge iterator);

const _in edge iterator to in edge iterator(const out edge iterator);
//>>> Undirected

//

// Undirected Edges

//

using undir edge iterator = typename edge set::undir iterator;

using const undir edge iterator = typename edge set::const undir iterator;

undir edge iterator undir edge end(); // sentinel
const undir edge iterator undir edge end() const;

undir edge iterator create undir edge(vertex type& u, vertex type& v);

undir edge iterator create undir edge(vertex type& u, vertex typeé& v,
edge user type consté&);

undir edge iterator create undir edge(vertex type& u, vertex typeé& v,
edge user type&é&);

undir edge iterator create undir edge(vertex iterator, vertex iterator);

undir edge iterator create undir edge(vertex iterator, vertex iterator,
edge user_ type constg);

undir edge iterator create undir edge(vertex iterator, vertex iterator,
edge_user typeé&é&);

undir edge iterator create undir edge(vertex id, vertex id);

undir edge iterator create undir edge(vertex id, vertex id,
edge user type consté&);

undir edge iterator create undir edge(vertex id, vertex id,
edge user type&é&);

void erase edge (undir edge iterator);

undir edge iterator find undir edge (vertex iterator, vertex iterator);
undir edge iterator find undir edge (vertex id, vertex id);

//<<< End Directedness

private:
vertex set vertex set ;
edge_ set edge set ;

allocator type alloc ;

b

The proposed form of the graph container for the adjacency matrix follows. It differs from the
adjacency list and adjacency array in that it requires knowing the number of vertices when the
graph is constructed. Vertices and edges are also created when the graph is constructed.
Vertices and edges cannot be created or erased.

template <class GV,
class VV,
class VSP,
class EV,
class A>
class graph<ad]j matrix_ type,
GV,
vV,
VSP,
EV,
edge type directed bidir,

edge_link none>
public conditional t<graph value needs wrap<GV>::value,
graph value<GvV>, GV>

using base t = typename conditional t<graph value needs wrap<GV>::value,
graph value<GV>,

GV>;
using graph user value = GV;
using allocator type = A;
using ADJ = adj matrix type;
using EDIR = edge type directed fwddir;
using ELNK = edge link none;
using size type = allocator type::size type;
using vertex user type = VV;

using vertex type vertex<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;

pair<const vertex id, vertex type>;

using vertex value type

using edge user type = EV;
using edge type = edge<ADJ, VV, VMEM, EV, EDIR, ELNK, EMEM>;
using edge value type = edge type;

using vertex set =
typename VSP::template vertex set<ADJ, VV, EV, EDIR, ELNK, EMEM, A>;

using vertex iterator = typename vertex set::iterator;

using const vertex iterator = typename vertex set::const iterator;
using edge set = typename edge set<ADJ, VV, VMEM, EV, EDIR, ELNK, A>;
graph () ;

graph (size type vertex count, allocator type alloc);

graph (size type vertex count, graph user type consté& value,
allocator type alloc=allocator type());

graph (size type vertex count, graph user typeé&& value,
allocator type alloc=allocator type());

graph (graph consté&) ;

allocator type allocator() const;

// Vertices

vertex seté& vertices();

vertex set consté& vertices() const;
vertex iterator vertex begin();
vertex iterator vertex end();

const vertex iterator vertex begin() const;

const vertex iterator vertex end() const;
const vertex iterator vertex cbegin() const;
const vertex iterator vertex cend() const;

vertex iterator find vertex(vertex id);
const vertex iterator find vertex(vertex id) const;

// All Edges
using edge iterator

typename edge set::iterator;
class const edge iterator = typename edge set::const iterator;

edge iterator edge begin(); // sentinel
const edge iterator edge begin() const;
const edge iterator edge cbegin() const;

edge iterator edge _end(); // sentinel
const edge iterator edge end() const;
const edge iterator edge cend() const;

edge iterator find edge (vertex iterator, vertex iterator);
edge iterator find edge(vertex id, vertex id);

// Out Edges
using out edge iterator

typename edge set::out iterator;
using const out edge iterator = typename edge set::const out iterator;

out edge iterator out edge end(); // sentinel
const out edge iterator out edge end() const;

out edge iterator find out edge(vertex iterator, vertex iterator);
out edge iterator find out edge(vertex id, vertex id);

// In Edges
using in edge iterator = typename edge set::in iterator;

using const in edge iterator = typename edge set::const in iterator;

in edge iterator in edge end(); // sentinel
const in edge iterator in edge end() const;

in edge iterator find in edge(vertex iterator, vertex iterator);
in edge iterator find in edge(vertex id, vertex id);

out edge iterator to out edge iterator(in edge iterator);
const out edge iterator to out edge iterator(const in edge iterator);
in edge iterator to in edge iterator (out edge iterator);
const in edge iterator to in edge iterator(const out edge iterator);

private:

vertex set vertex set ;
edge_set edge_set ;
allocator type alloc ;

}s

Algorithms

We propose the addition of non-member functions to allow a user to perform depth- and
breadth-first searches of a graph, find a shortest path, ..., operations common in data mining
research.

All work in this section needs revisiting in light of the range-v3 functionality that is coming in
C++20. While informative, it should be considered a work-in-progress and will be changing.

Algorithm Class Design

When considering graph algorithms, the class design needs to use reasonable defaults and
must allow a user to customize those algorithms to meet their needs. Below is the
Bellman-Ford shortest path algorithm to demonstrate how this is accomplished. It provides a
default design using an edge weight of 1 and weight type of int. Both edge function and type
can be overridden. The function should accept any function object (lambda, functor, or free
function) that meets the signature requirements of the algorithm, as defined by the WeightFnc
template parameter.

template<class G,
class Weight = int,
class WeightFnc = function<Weight (GT::edge typeé&)>>
class bellman ford shortest paths example {
public:
using graph type = typename G;
using vertex value type = typename G::vertex value type;

using edge value type = typename G::edge value type;

using weight type = Weight;
using edge weight fnc = WeightFnc;
using path = ...;

public:
bellman ford shortest paths example (
graph typeé& g,

edge weight fncé& f edge weight =
[] (edge type&) -> weight type { return
graph (&g), edge weight fnc (f edge weight) ({}

// return shortest path between u & v

path operator () (vertex type consté& u, vertex type consté& v);

private:
graph type* graph ;
edge weight fnc edge weight fnc ;
// accessor: edge weight fnc (uv) -> weight type
}i

The default usage of this class is given as follows.
G g;
(add vertices & edges)

bellman ford shortest paths<G> bfsp(g);
auto& uit = g.find vertex(...);

auto& vit = g.find vertex(...);

auto path bfsp (uit,vit);

Depth-First & Breadth-First Searches

DFS (Depth-First Search) functions
template <class FwdGraph, class Visitor>
void depth_ first visit (FwdGraphé& g,
typename FwdGraph::vertex iterator first,
typename FwdGraph::vertex iterator last,
Visitor vis = dfs visit base<FwdGraph>);

// interface function for Breadth First Search

template <class FwdGraph, class Visitor>

void depth first visit (FwdGraphé& g,
typename FwdGraph::vertex value typeé& u,
Visitor vis = dfs visit base<FwdGraph>);

Base class to derive a DFS visitor from
template <class G>
struct dfs_visit base {
using graph type = G;
using vertex value type = typename G::vertex value type;

using edge value type typename G::edge value type;

void discover vertex(vertex value type& u) {}
void examine vertex(vertex value type& u) {}
void finish vertex(vertex value type& u) {}

void examine out edge (edge value type& uv) {}

}i

BFS (Breadth-First Search) functions

template <class FwdGraph, class Visitor>

void breadth first visit (FwdGraphé& g,
typename FwdGraph::vertex iterator first,
typename FwdGraph::vertex iterator last,
Visitor vis = bfs visit base<FwdGraph>);

// interface function for Breadth First Search

template <class FwdGraph, class Visitor>

void breadth first visit (FwdGraphé& g,
typename FwdGraph::vertex value type& u,
Visitor vis = bfs visit base<FwdGraph>);

Base class to derive a visitor from
template <class G>
struct bfs_visit base {
using graph type = G;
using vertex value type = typename G::vertex value type;

using edge value type typename G::edge value type;

void discover vertex(vertex value type& u) {}
void examine vertex(vertex value type& u) {}
void finish vertex(vertex value type& u) {}

void examine out edge (edge value type& uv) {}

}i

Shortest Paths

Future: Bellman-Ford algorithm
Future: Dijsktra algorithm

erase() and erase_if() non-member functions

We also propose the addition of non-member functions erase and erase if to remove
specified vertices and edges, that is, uniform container erasure.

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,

class A>
void erase (typename graph<ADJ,GV,VV,VSP,EV,EDIR,ELNK,A>: :vertex sets& vs,
VV consté& value);

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,
class A, class Pred>
void erase_ if (typename graph<ADJ,GV,VV,VSP,EV,EDIR,ELNK,A>: :vertex set& vs,
Pred pred);

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,
class A>
void erase (typename graph<ADJ,GV,VV,VSP,EV,EDIR,ELNK,A>: :edge_set& vs,
EV consté& value);

template <class ADJ, class GV,
class VV, class VSP,
class EV, class EDIR, class ELNK,
class A, class Pred>
void erase_ if (typename graph<ADJ,GV,VV,VSP,EV,EDIR,ELNK,A>: : :edge_set& vs,
Pred pred);

Design Notes

A graph contains a number of types and containers, including vertices, edges and edge lists,
making it more complex than a standard container that holds a single element type.

The interrelated nature of the elements of a graph brings additional challenges. Standard
containers take full ownership of their elements, but edges belong to both incoming and
outgoing edge lists for the in and out vertices, requiring it to use an intrusive idiom where each
list's node is a member variable on the edge. The edge takes on more responsibility during its
construction and destruction.

Because all the types are closely related, it becomes challenging to break cyclic dependencies
during compilation. Defining a common set of template parameters that are used consistently
helps with this. It adds more parameters than is common, but allows each class to define a
related class without having to include its definition in a header. All it needs is a forward
declaration of the class.

User-defined values are a single type, specified via template parameters for graph, vertex and
edge. They can be any value type and are used as the base class of the graph, vertex or edge

that uses it. Types that aren’t normally allowed to be base classes are wrapped in a special
graph value struct with a single “value” member with the defined type. This gives a
natural access to the values as public member variables. When a value isn’t needed, a special
empty value struct with no members is used.

Template arguments are customization points for graph, vertex and edge values, and for
selecting the type of vertex set based on vector, map or unordered map.

Open Questions & Issues

N

How should existing Concepts be used by graph types?

2. What additional Concepts might be useful for graph? (e.g. directed/undirected,
cyclic/acyclic, ...)
3. How does range v3 impact algorithm and iterator design?
4. Should coroutines be considered in the algorithm design? How?
5. Should this be in its own module?
6. Where would constexpr add the most value?
7. Are reverse iterators desired/useful?
Acknowledgements

This paper is thanks to discussion in SG19 Machine Learning.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation,
Khronos and the Standards Council of Canada.

References

1. Implementations
a. The Boost Graph Library (BGL)

b. JagraphT
c. The Stanford cslib package

d. dlib.net graph
2. Data sets

a. Graph500
b. GAP Benchmark Suite

https://www.boost.org/doc/libs/1_70_0_beta1/libs/graph/doc/index.html
https://jgrapht.org/
https://stanford.edu/~stepp/cppdoc/BasicGraph-class.html
http://dlib.net/
https://graph500.org/
http://gap.cs.berkeley.edu/benchmark.html

