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Background 
 
In the discussions of P0652 and P1470, SG1 took the following polls: 
 
"We believe it is important to permit implementations that do not protect values from concurrent 
visits. (note: P0652 does protect values from concurrent visits)" 
SF F N A SA 
6 3 1 3 0 
 
"We would like to see a policy-based design that allows customization of concurrent map (e.g., 
whether deletion is permitted)." 
SF  F  N  A  SA 
3   5  4  0  2 
 
"We believe it is important that the concurrent map permits concurrent reads without contention." 
Unanimous consent. 
 
The room asked for: 

- An SG1-focused paper on the design space of hashmap parameterization. 
- An LEWG-focused paper, to determine to what extent type parameterization would ever 

make it out of LEWG. (There was concern that they would not be willing to advance any such 
parameterized data structures for library-design reasons).  

 
This is the first of these papers. 
 
A note on terminology: What counts as a read or write is to some extent context-dependent. We 
need to be clear on if we’re talking about the structure of the map itself (i.e. inserting or removing an 
element, or finding the address of an element), or modifying an element that we’ve already looked 
up. A user with a map whose key set rarely changes may wish to modify the associated values 
often. Likewise, another user may have a frequently-changing key set, but never want to modify the 
associated values (say, because they are computed as a pure function of the associated key). I’ve 
tried to pick examples where it’s clear whether terms like “read-mostly” or “write-mostly” refer to the 
structure of the map or its contents. By untying these notions from one another, concurrent map 



 

implementations can substantially improve their performance in many real world scenarios; this fact 
is what drove the poll results above. 

Example use cases 
Having a few representative examples will concretize the problem domain, motivate the policies 
I’ll suggest below, and, hopefully, let the reader come up with closer-to-home examples of their 
own. These will necessarily reflect my own biases, and tend towards the issues faced by 
highly-threaded, large-footprint, request-oriented server workloads. With each example, I’ll try to 
point out a few features of a hypothetical concurrent hash-map that the use case does or 
doesn’t care about. I’ll address these again after going over the performance tradeoffs of 
various types of synchronization a concurrent map could provide; it may be useful to keep these 
examples in mind when reading the “feature set / performance” section. 

Stats counting 
A webserver wants to keep track of various event counts (how many requests timed out, how 
many used some uncommon code path, etc.). The key is a string (to allow counters determined 
at runtime; but regard it as an integer or pointer if you prefer) and the value is either an integer 
(for true event counts) or some more complex data structure (like a histogram). At some periodic 
interval (say, once a minute), a background thread iterates over all items in the map and sends 
them to a remote server for aggregation. 
 
Some interesting things to note about this case: 

- It’s very heavily write-mostly, insofar as the values themselves are concerned 
- It’s very heavily read-mostly, insofar as the structure of the map goes (new keys are 

rarely added) 
- Keys are never removed; the size of the map can only grow 

Configuration information 
A server needs to know a variety of data that can change at runtime. Some examples: 

- Which feature flags are currently enabled? (Often times, dangerous code changes will 
be guarded by such a flag; first the feature is turned on for 1% of server processes, then 
5%, then 10%, etc.). 

- Should this server run high-overhead profiling functionality? 
- What’s the current value of the “spammy link” bloom filter? 

 
The values of these settings change rarely; they may be updated via some diffing mechanism 
from a remote server. Here are some usage properties I expect this map to have: 

- It’s very heavily read-mostly. Periodically, though, it may go through phases during which 
it’s heavily write-mostly. 



 

- We expect a very strong hot-key effect, in which a small number of keys (say, those 
controlling currently turned on features, touched on every request) are read very 
frequently, and a large number are touched rarely. 

Value cache 
This one is straightforward: you have a computation-intensive pure function called from many 
threads and want to memoize the results. This ends up being a lot like the configuration 
information use case; heavily read-mostly, with hot keys. (Well, we hope it’s true; otherwise 
caching won’t be effective). 

Proxy state machine 
A proxy forwards bytes from clients to servers, providing services like rate limiting, encryption, 
etc. I/O threads access items in the map in order to route bytes appropriately and perform their 
logic. The logic within the state machine might be complex, keep track of lots of state, etc.; it’s 
not easily amenable to parallel access. Removal may be common (say, when a client 
disconnects). 

The bank account example 
This is the naive deadlock example commonly used in “Intro to operating systems” classes. The 
map is from bank account numbers to information about those accounts. Balance queries (from 
a single account) and transfers (between accounts) are processed by accessing the map. 
 
On its face, this sounds unrealistic; you couldn’t really keep this information in memory, for a 
variety of account safety and regulatory compliance issues (maybe you’re a bitcoin bank?). But 
variants of this can turn out less silly: suppose a process is tracking a binding from user 
sessions to the backend servers that respond to queries for those sessions (as a performance 
optimization; we’re trying to make those bindings “sticky”). We have two maps, then; one from 
user -> session, and one from backend server -> {set of users}. During rebalancing operations 
(where a session is moved from an overloaded backend to less-loaded one), we may want to 
modify the mappings for the user and both backends all at once. 

Feature set / performance tradeoffs 
Here, we’ll take a look at some of the performance consequences of extra synchronization 
guarantees. 



 

The features 

Synchronized visitation / map-provided locking 
Here, the map provides safety not just for the structure of the map itself, but also for the access 
to its elements; write visitors get exclusive access, and read visitors get shared (among readers) 
access. 
 
There are two reasonable ways to accomplish this: 

1. Keep some per-bucket/per-shard/per-item atomic in the hashmap. Readers do a RMW 
operation on that object, and writers read it. 

2. For each bucket / shard / map, keep a distributed (across threads, CPUs, NUMA nodes, 
etc.) set of atomics. Readers do a RMW (or just a release store, if they can guarantee 
exclusivity) on their atomic, and writers do a read on all the atomics. 

 
(Transactional memory could theoretically be a third way, but the practical limitations are severe 
and non-portable here). 
 
This is a costly guarantee to provide: 

- Option 1 introduces reader-reader contention: On typical hardware, each reading thread 
has to acquire exclusive access to the cacheline containing the atomic. This serializes 
that phase of reader computation. Most maps have a “hot key” effect; a small fraction of 
keys are accessed much more commonly than most in the map. As a result, reader 
access is serialized by the coherence protocol. 

- Option 2 forces one of a number of tradeoffs, none of them particularly desirable. Any 
decrease in reader-reader contention is met by a corresponding increase in the amount 
of work a writer has to perform (i.e. if you have a per-CPU atomic to minimize cache 
contention, the writer has to do O(numCPUs) reads of those counters per write). Getting 
reader->atomic sharding right is a tricky, research-level problem (e.g. mapping two 
threads running on CPUs on two different sockets to the same atomic is a pretty bad 
outcome on its own). 

 
Aside from the cacheline contention, there’s the blocking incurred by excluding other accesses; 
a reader cannot proceed simultaneously with a writer, and vice versa; a long critical section can 
cause arbitrary-length stalls. This applies even in situations where this would be correct (say, 
the value is const, or otherwise thread-safe, or where the reader and writer access different 
fields). This is bad for CPU workloads, but worse for GPU ones. 

Removal / replacement support (with synchronous destruction) 
(I.e. when an element is removed from the map, the destructors of its key and value types run 
before the erase() call returns). 



 

 
The lightest-weight way of accomplishing this is reference counting, or something very similar to 
it; readers or modifiers bump a counter when they look up an item, and decrement it once 
they’re done with the item (if the map otherwise requires locks to support visitation, holding that 
lock suffices). 
 
This has the same sorts of contention issues as visitation; it incurs reader overhead (even if that 
removal functionality is never used). It has a benefit, though: it avoids the blocking issues. On 
hardware with relaxed memory models, or workloads that can tolerate long lookup latencies, the 
cost of contention may be hidden somewhat. 
 
It may seem odd that we’re lumping together removal and replacement; they’re not equivalent 
operations. However, the implementations end up looking pretty similar, and have similar 
tradeoffs. 

Removal / replacement support (without synchronous destruction) 
(I.e. when an element is removed from the map, the destructors of its key and value types run 
with the same sorts of guarantees as with hazard pointers or RCU). 
 
This can be accomplished without introducing reader-reader contention, via the deferred 
reclamation techniques going into the concurrency TS (or any other latest<> backend). 
However, it does force either a heap-allocated, node-based implementation (which adds a 
pointer indirection down all paths), or tombstoning (which adds implementation complexity, and 
can introduce tricky pathologies if not done correctly). 

Multiple element access 
I.e. can one thread access two map entries at once? Or items in two different maps? 
 
To support this, the implementation: 

- Can’t hold locks while the user accesses an item (to avoid deadlock) 
- Must protect the lifetime of the key and value during their access (via a guard object or 

similar mechanism at an API level). 
 
The amount of overhead this imposes on other operations depends heavily on the underlying 
implementation; if it supports visitation, we need an extra counter or set of locks (splitting object 
protection from its lifetime protection). On implementations that natively only provide lifetime 
protection, accessing multiple elements simultaneously usually falls out for free. 

Exotic synchronization requirements 
Say a reader thread’s lookup of key “abc” fails, and a writer thread’s insertion of key “abc” 
succeeds. Does the read failure synchronize with the write? What if the read succeeds, but sees 



 

an older value? Which IRIW outcomes are possible if performed on map elements instead of 
atomics? Do we get a happens-before relationship there? 
 
It’s hard to provide those guarantees in a contention-free manner in the C++ memory model. 
Most hardware supports the SC semantics at the cost of a heavy fence on the read side (but, 
avoiding any contended accesses); the common exceptions are Itanium and (I’m less confident 
on this one) Nvidia. 
 
It’s hard to come up with a realistic example where this matters. 

Comparing the features to other synchronization primitives 
Various synchronization objects can be implemented in terms of a concurrent map, by making 
the key in the map the address of the synchronization object (just using the address as some 
unique identifier). It can be useful to think of the functionality in terms of these primitives; they 
are upper bounds on the performance of the map. 

Reader/writer locks: Synchronized visitation 
Simply run the critical section during the visitation. 

atomic_shared_ptr<T>: Replacement with synchronous destruction 
Make the value type shared_ptr<T>. 

latest<T>: Replacement without synchronous destruction 
Make the value type T. Access the T object using the lifetime protection provided by the map. 
 
This breakdown roughly matches up with the analysis from the previous section. Reader/writer 
locks tend to scale poorly even for read-mostly workloads, and correspondingly we argued that 
a map providing synchronized visitation would likely do the same. atomic_shared_ptr<T> tends 
to be resilient to the latency spikes a long critical section might cause, but at the cost of high 
constant factors. latest<T> is fast, but at the cost of implementation complexity. 

Use cases revisted 
We can see a pattern: the more expensive the synchronization a map might provide is, the less 
commonly we need it. This analysis drove the SG1 polls at the beginning. 

Stats counting 
In the simple case of raw event counts, locking is extraneous; instead of using a lock to protect 
incrementing an integer, we should just make the integer atomic. For complex stats types (e.g. 
dynamically-bucketed histograms, time-series data), the externally-provided locking may be 



 

helpful. Even there though: Facebook’s experience has been that we often want some clever 
internally-synchronized data structure for our hot stats types (see e.g. folly’s BufferedDigest 
classes, which compute quantile estimation and time series via CPU-local aggregation that is 
aggregated only periodically). Removal isn’t a feature here; paying extra to provide it would be 
undesirable. 

Configuration information 
Here, the data in question is heavily read-mostly. The data is updated rarely enough that it’s 
usually preferable to just replace the contents, rather than updating them in place. 
Reader-reader contention is unacceptable. Removals might be desired, but we don’t need 
synchronous destruction of contents. 

Value cache 
This is another read-heavy case where the value type doesn’t need any protection (indeed, 
they’re const). Removals may be useful (say, to get an approximate bound on the size of the 
cache). Synchronous destruction gives earlier memory reclamation, but avoiding it allows higher 
performance. 

Proxy state machine 
This is a good use case for visitation; we don’t expect much multithreaded access to individual 
values, and when we access a value we want our access to be truly exclusive. Minimizing the 
syntactic overhead of the concurrency is just what the user wants; the parallel nature of the map 
is not the user’s primary concern, and paying extra costs to avoid having to deal with the 
difficulties of thread-level parallelism is acceptable to them. 

The bank account example 
We expect this to be read-mostly in the common cases, with occasional insertions and 
removals. The user must insert their own locking and deadlock avoidance into the value types, 
in the case where they want to perform atomic transactions across multiple accounts. This 
needs multiple-element access, but can be flexible in other respects. 

The options 
Here I’ll list some possible parameterizations, and a rough sketch of their semantics. I’ve erred 
on the side of including too many; the idea being that it will be better to show too much of the 
possible design space than too little. 
 
There are lots of mechanisms we could use to pass parameters to the map, but I regard the 
specific choice of one as an LEWG question, so I’ll leave that discussion for the other paper. 



 

You can think of them as enum values that get OR’d together, a configuration object, an 
executor-style policy interface, or whatever else your preferred mechanism may be. 

Synchronized Visitation support 
I think there are three reasonable levels of functionality one might want: 

- Unsupported: The map provides no mutual exclusion on access to values 
- Exclusive-only: The map provides exclusion on values equivalent to a mutex. 
- Shared: The map provides exclusion on values equivalent to a reader/writer mutex. 

 
The only reason one might want the exclusive-only mode over the shared mode is that 
exclusive mutexes can have lower constant-factor overheads. 
 
Recalling the poll that attained unanimous consent: I think that any reasonable implementation 
that ​permits concurrent reads without contention cannot support synchronized visitation in any 
form. 

Removal/Replacement support 
There are four reasonable choices of strength of semantics 

- Unsupported 
- Supported, with asynchronous destruction of the removed element (i.e. via RCU, hazard 

pointers, etc.). 
- Supported, with “locally synchronous” destruction of the removed element. That is to 

say, the completion of the destructor is sequenced before the return from erase(). 
- Supported, with “globally synchronous” destruction of the removed element. In this case, 

the completion of the destructor happens before any insertion of an item with the same 
key. 

 
I think that any reasonable implementation that ​permits concurrent reads without contention can 
only provide one of the top two levels of support. 
 
For some reason, no map I’m aware of implements the locally-synchronous guarantee (except as 
part of the globally synchronous guarantee); this despite the fact that: 

- I can’t think of any non-synthetic examples that require the extra strength of the global 
guarantee 

- The local guarantee has some obvious tail-latency benefits for complex map types (you can 
move destruction out of the critical section). 

Therefore, when describing existing implementations later on, I’ll just use “synchronous destruction” 
to refer to the global guarantee. 
 
With replacement, there’s a question as to whether or not transient states become visible. If not, and 
the key type is not trivially copyable, then insertions and replacements require extra synchronization, 



 

even if replacement is never actually used (lookups can remain lock-free and without contention). 
Making replacement support optional is another mechanism to support this. 

Multiple-element access support 
This requires the ability to “pin” an item, protecting it from being destroyed (or moved-from by an 
internal map operation). Pinning must not block pinning from other threads, for 
deadlock-avoidance reasons; it can’t be just a simple lock. 

Ordering guarantees 
Most litmus tests for atomics can straightforwardly be turned into an equally confusing ones for 
maps. I don’t think we need to replicate the whole memory model into the map specification, 
though. I see three useful levels of guarantee: 

- Baseline: The insertion (resp. removal) of an element strongly happens before 
successful (resp. failed) lookups of that element. 

- Per-item ordering: The same as the baseline guarantees, but we also provide the 
guarantee that lookups returning an earlier value associated with a given key strongly 
happen before insertions of a later one. 

- Sequential consistency: The hashmap is linearizable, and its linearization can be 
incorporated into the SC ordering. 

 
This omits an arguably important level of support, weaker than the baseline given here: the one 
where insertion is only dependency-ordered before lookup. Even the baseline guarantee here 
requires read-side fences on some architectures; there are real world use cases that don’t need 
or want this overhead. Given the uncertainty around the future direction of 
memory_order_consume, though, expanding its scope seems unwise. 

Existing maps and their feature sets 
It may be useful to see the portions of the design space that different approaches have picked. 
Here I’ll describe some. (In many cases, these guarantees aren’t formalized or documented; in 
such cases I’m giving my best guess best on documentation and the implementation, where 
available). 

The P0652R2 API 
Synchronized visitation support: Shared 
Removal/replacement destruction semantics: Supported, with synchronous destruction 
Replacement support: Supported, with globally synchronous destruction. 
Multiple-element access support: No 
Ordering guarantees: Sequential consistency 
 



 

Of note is that it does not support unsynchronized visitation. 

Intel TBB’s concurrent_hash_map 
This is broadly the same in its guarantees as P0652. It’s my understanding that this was the 
inspiration for P0652. 

Intel TBB’s concurrent_unordered_map 
Synchronized visitation support: Unsupported 
Removal/replacement destruction semantics: Unsupported 
Replacement support: No 
Multiple-element access support: Yes 
Ordering guarantees: Baseline 

Libcds Michael map and Feldman Map 
Synchronized visitation support: Unsupported 
Removal/replacement destruction semantics: Supported, with asynchronous destruction  
Replacement support: Yes 
Multiple-element access support: Yes (not nicely at the API level, but the implementation does) 
Ordering guarantees: Baseline 

Libcds Striped map and Cuckoo map 
Synchronized visitation support: Exclusive-only 
Removal/replacement destruction semantics: Supported, with synchronous destruction 
Replacement support: Yes 
Multiple-element access support: No 
Ordering guarantees: Sequential consistency 

folly::ConcurrentHashMap 
Synchronized visitation support: Unsupported 
Removal/replacement destruction semantics: Supported, with asynchronous destruction 
Replacement support: Yes 
Multiple-element access support: Yes 
Ordering guarantees: Baseline 

Kokko::UnorderedMap 
Synchronized visitation support: Unsupported 
Removal/replacement destruction semantics: Erase is done in batch (the host calls 
begin_erase(), then the device makes some number of erase() calls in parallel, then the host 
calls end_erase()); I think this is morally closest to “Supported, with asynchronous destruction” 



 

Replacement support: Yes 
Multiple-element access support: Yes 
Ordering guarantees: Baseline 
 
Note: This map allows for inserts to fail, and moves the “rehash-on-failure” semantics to an 
outer loop (for better batching). I don’t think this is fundamental, but would require an extra layer 
of indirection. 

java.util.concurrent.ConcurrentHashMap 
Synchronized visitation support: Unsupported 
Removal/replacement destruction semantics: Supported, with asynchronous destruction 
(though, note that this is less meaningful for Java). 
Replacement support: Yes 
Multiple-element access support: Yes 
Ordering guarantees: Baseline 

ConcurrencyKit’s ck_ht_t 
Synchronized visitation support: Unsupported (readers are lock-free and the writer is wait-free; 
but see below) 
Removal/replacement destruction semantics: Supported, (this is C, so the destructor aspect 
makes less sense; the map does tombstoning with the option for periodic user-initiated GC). 
Replacement support: Yes 
Multiple-element access support: No 
Ordering guarantees: Weaker than baseline, but stronger than the consume-based ordering 
described above (there’s a load-load barrier between the metadata check and the key check). 
 
This map only supports single-producer multi-consumer workloads. To support writer-writer 
concurrency, the user would need to provide their own sharding and mutual exclusion (e.g. by 
having many sub-maps). 

Some implementation sketches 
A couple people in SG1 worried that we would be requiring vendors to write a new 
implementation for every setting combination; exponentially many in total. Here, we’ll see that 
need not be the case. 
 
There are two reasons why: 

- Most of the options can be ordered by strength, and implementing the stronger 
guarantees is a correct implementation of the weaker guarantees, too. (Implementing the 
stronger guarantees often turns out to be easier, too). Implementers can just provide the 
strongest implementation, and enable_if away any methods the options don’t ask for. 



 

- Most options can be straightforwardly provided by using shared functionality that’s 
generic across implementations. The core map implementation doesn’t need to worry 
about how that functionality is provided. For example, synchronized visitation can be 
easily added as a mixin to any map: add a sharded lock table. 

 
I’ll sketch how a vendor might support all the listed options, first with a simple lock-based 
approach, and then gradually adding a second core implementation that grows in the 
functionality that it can provide via mixins. 

The high-overhead implementation 
Here, the implementer wants to minimize the amount of code they have to write; they’re OK 
forcing locking and contention on all workloads to accomplish that goal. 
 
This vendor can use a sharded lock table (with reader/writer locks), and a “pin” count per shard. 
To provide synchronized visitation, just acquire the corresponding lock. All the core hashmap 
operations are easy to provide (the whole point of locking is that it makes things easy!). To 
implement multiple-element access, bump the pin count and return a handle to the object 
(removers have to mark the item as logically removed, and wait for its pin count to drop to zero 
before executing the destructor). 
 
If multiple-element-access support is not desired, simply omit pin counts from the lock table. 

A two-underlying-maps implementation 
Here, the implementer is willing to do a little more work in order to accommodate the desire for a 
higher-performance implementation. 
 
They can add a second class to their detail namespace: a lock-free map (with all their atomic 
operations tagged memory_order_seq_cst) without any removal support. The public API 
chooses between each implementation in detail:: as follows: 

- If the user requests removal or synchronized visitation, use the previous implementation 
- Otherwise, use the lock-free one. 

Adding parametric ordering 
Here, the implementer is willing to do the two-maps approach, but also think about relaxed 
memory orders. 
 
Instead of passing in memory_order_seq_cst on all their atomic operations, they define 
constants like the following: 
 



 

constexpr​ ​static​ memory_order kLoookupMemoryOrder = (kBaselineOrdering ? 
memory_order_acquire : memory_order_seq_cst); 

constexpr​ ​static​ memory_order kInsertMemoryOrder = (kBaselineOrdering ? 
memory_order_release : memory_order_seq_cst); 

 
They replace the memory orders they pass with these constants. 

A two-underlying-maps implementation, with parametric ordering 
and removal 
Most lock-free maps can be made to support removal; the tricky part is the garbage collection. 
But, there are two deferred reclamation libraries targeting the same launch vehicle as the map 
proposal; that functionality comes for free. 
 
To support removal, then, the map implements the algorithm, but hides the specific deferral 
mechanism behind something like the latest<T> API. If the user doesn’t request removal, then 
the implementation is a no-op for all operations. If the user requests asynchronous removal, 
then the implementation uses hazard pointers or RCU as its backing mechanism. If the user 
requests synchronous removal, the implementation uses reference counting. 
 
The complexity of the parametricity is “boxed up”. The core parts of the map algorithm don’t 
need to think about it at all, and the support for an option can be made small and self-contained. 

Unanswered questions 
Mostly I regard the big questions as API ones here, and arguably better suited for LEWG: 

- What is the specific parameterization mechanism? 
- What does the unsynchronized access API look like? 
- etc. 

 
There are also some more directly SG1-y ones: 

- Should expensive functionality be opt-in or opt-out (i.e. should the default map be 
fast-but-slim or slow-but-featureful)? 

- What does “same key” even mean in the presence of concurrency? The definitions of 
key equivalence used for std::unordered_map don’t work here, since they fundamentally 
require the notion of a map with a set of keys that doesn’t change within a call. You 
could phrase your guarantees in terms of the hash value itself (which, being trivially 
copyable and memcp-comparable, is simpler), but that feels wrong and rules out some 
types of perfectly reasonable implementation. 

 
I have opinions on some of these, but none particularly polished. 


