Conversion to execution encoding should not lead to loss of meaning
Document #: P1854R0

Date: 2019-10-06

Project: Programming Language C++

Audience: SG-16, EWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

It’s just semantic! - Kevlin Henney

Abstract

The current wording does not guarantees that sequences of characters will be preserved by compilation,
which reduces the portability and reliability of C++ source code.

Motivation

Implementation defined behaviors related conversion to execution encoding reduce the portability of
C++ program, and lead to silently incorrect programs as implementation are allowed to modify the
characters they cannot represent in the execution encoding. Strings are text which carries intent
and meaning; An implementation should not be able to alter that meaning.

Impact on the standard and implementations

This constitute a breaking change in the wording, as well as some implementations(MSVC) and
matches other existing implementations’ behaviour. However, the code that would break would not
be code that matches the developer intent.

Proposed wording

Modify 5.2.5 [lex.phases] as follow

Each basic source character set member in a character literal or a string literal, as well
as each escape sequence and universal-character-name in a character literal or a non-raw
string literal, is converted to the corresponding member of the execution character
set ([lex.ccon], [lex.string]); if there is no correspondmg member it is converted to an

the program is

ill-formed.

mailto:corentin.jabot@gmail.com

Modify 5.13.3.2 [lex.icon] as follow

A character literal that does not begin with u8, u, U, or L is an ordinary character
literal. An ordinary character literal that contains a single c-char representable in the
execution character set has type char, with value equal to the numerical value of the
encoding of the c-char in the execution character set. An ordinary character literal that
contains more than one c-char is a multicharacter literal. A multicharacter literal—oran

charaeter—set, is conditionally-supported, has type int, and has an implementation-
defined value. An ordinary character literal containing a single c-char not representable

in the execution character set is ill-formed.

Modify 5.13.3.6 [lex.icon] as follow

A character literal that begins with the letter L, such as L’z’, is a wide-character
literal. A wide-character literal has type wchar_t. The value of a wide-character literal
containing a single c-char has value equal to the numerical value of the encoding of
the c-char in the execution wide-character set, unless the c-char has no representation
in the execution wide-character set, in which case the value-is-implementation-defined
program is ill-formed. [Note: The type wchar_t is able to represent all members of
the execution wide-character set (see ??). — end note] The value of a wide-character
literal containing multiple c¢-chars is implementation-defined.

Modify 5.13.3.8 [lex.icon] as follow

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhhh consists
of the backslash followed by x followed by one or more hexadecimal digits that are taken
to specify the value of the desired character. There is no limit to the number of digits in
a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by the
first character that is not an octal digit or a hexadecimal digit, respectively.

The value of a character literal is implementation-defined if it falls outside of the
implementation-defined range defined for char (for character literals with no prefix) or
wchar_t (for character literals prefixed by L).

[Note: If the value of a character literal prefixed by u, u8, or U is outside the range
defined for its type, the program is ill-formed. — end note|

If the value of a character literal is outside the range defined for its type, the program

is ill-formed.

Acknowledgments

Many thanks to JeanHeyd Meneide, Peter Bindels, Zach Laine, Tom Honermann and Steve Downey
who reviewed this paper and offered valuable feedback.

References

[N4830] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.1ink/n4830

https://wg21.link/n4830

	1 Abstract
	2 Motivation
	3 Impact on the standard and implementations
	4 Proposed wording
	5 Acknowledgments
	6 References

