
Constraining Readable Types
Document #: P1878R0
Date: 2019-10-04
Project: Programming Language C++

LWG
Reply-to: Eric Niebler

<eniebler@fb.com>
Casey Carter
<cacarter@microsoft.com>

1 Abstract
There are a number of serious issues in the current definitions of the readable and indirectly_swappable
concepts and their associated types that prevent them from properly constraining the algorithms with which they
are constrained. Several of these are the subject of US NB comments. They all have to do with whether or not
const- and/or reference-qualified types (lvalues and rvalue) model readable and/or indirectly_swappable.

This paper treats all these problems together and suggests a simple fix for the problems, addressing the NB
concerns.

2 The Problems
2.1 Problem #1: The readable concept is sensitive to const-ness and value cate-

gory
The readable concept is what gives input iterators their “read-ability” via the unary operator* syntax, and the
iter_ associated types (iter_value_t, iter_reference_t, and iter_rvalue_reference_t). The formulation
in [N5410] is as follows:
template<class In>

concept readable =
requires {

typename iter_value_t<In>;
typename iter_reference_t<In>;
typename iter_rvalue_reference_t<In>;

} &&
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;

This is testing that the associated types are well-formed. The presence of a unary operator* is implied by the
well-formed-ness of the iter_reference_t associated type, which is specified as:
template<dereferenceable T>

using iter_reference_t = decltype(*declval<T&>());

There are a couple of problems with this formulation of readable<In>:

1. Only an lvalue of type In is required to be readable. Rvalues are not required to be readable, nor are const
lvalues. The STL as specified assumes that the value category and const-ness of an iterator does not affect
whether it can be dereferenced. The readable concept should capture this.

1

mailto:eniebler@fb.com
mailto:cacarter@microsoft.com

2. Nothing about this formulation is requiring that, say, iter_value_t<X> names the same type as
iter_value_t<const X>; or that iter_reference_t<X> names the same type as iter_referece_t<const
X>. Most code that is generic over input iterators is not equipped to deal with iterator types that violate
these assumptions. The readable concept should require that the associated types are insensitive to
top-level const and reference qualification.

The fix would be for the readable concept to add additional requirements to test all the permutations of const
and reference qualification for all the associated types and also for the unary operator* expression. That is
obviously prohibitively expensive, both in specification complexity as well as with compile-time resources.

This specification difficulty is not new, and the concepts in the Standard Library make use of a syntactic
convention to opt-in to all such permutations of const qualification and value category: implicit expression
variations.

The exact meaning of implicit expression variations, and how a concept definition opts-in to these extra syntactic
and semantic constraints, are specified in [concepts.equality]/p6-8. In short, if the local parameters declared
in a requires-expression are const-qualified, any use of that parameter as the operand of a required expression
generates implicit variations of that required expression that are also required, each of which uses the operand
with a different const qualification and/or value category. Implementations are not required to syntactically
enforce these extra requirements, but a type only models the concept if it supports all the required expressions,
explicit and implicit.

The fix to the readable concept is to reformulate it so that we get the benefit of implicit expression variations.
See below:
template<class In>

concept readable-impl = // exposition-only
requires(const In in) {

typename iter_value_t<In>;
typename iter_reference_t<In>;
typename iter_rvalue_reference_t<In>;
{ *in } -> same_as<iter_reference_t<In>>;
{ iter_move(in) } -> same_as<iter_rvalue_reference_t<In>>;

} &&
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;

template<class In>
concept readable =

readable-impl <remove_cvref_t<In>>;

The above change uses the implicit variations to enforce that all permutations of const qualification
and value category on an iterator give the same semantics and have the same iter_reference_t and
iter_rvalue_reference_t. However, it says nothing about iter_value_t since that type is not a part of any
of the required expressions that involve the local parameter in declared in the required expression.

We can fix this by redefining the iter_value_t alias to strip top-level const and reference qualification before
using it to instantiate std::iterator_traits and std::readable_traits. See the section Proposed Resolution.

After this change, a type such as std::optional no longer models readable because the return type of its unary
operator* member is different depending on the const-ness of the std::optional.

Presently, we have no examples of algorithms that are generic over pointer-and-iterator-like things and optional-
like things, so the lack of a concept that can be used to constrain such algorithms is not troubling. However, to
indicate that readable is not usable for constraining operations on types that do not represent an indirection, we
might consider renaming readable to indirectly_readable. This paper does not propose that, but it would
probably be worth polling.

2

2.2 Problem #2: indirectly_swappable only tests that iter_swap is callable with
lvalue iterators

The formulation of indirectly_swappable in [N5410] is as follows:
template<class I1, class I2 = I1>

concept indirectly_swappable =
readable<I1> && readable<I2> &&
requires(I1& i1, I2& i2) {

ranges::iter_swap(i1, i1);
ranges::iter_swap(i2, i2);
ranges::iter_swap(i1, i2);
ranges::iter_swap(i2, i1);

};

This requires that lvalue expressions of the two iterator types are indirectly swappable by passing the lvalues
to the iter_swap customization point. However, this concept does not require that rvalues can be passed to
iter_swap. Permuting algorithms are expected to frequently be implemented in terms of expressions such as
iter_swap(i+n, j+m), making this oversight somewhat embarrassing. We do not intend to over-constrain the
algorithms by requiring authors to assign iterator expressions to local variables in order to swap the elements
they denote.

An earlier formulation of indirectly_swappable (in [P0022R2]) made use of implicit expression variations
([concepts.equality]/p6) to handle all the necessary combinations of const- and non-const-qualification and
lvalue and rvalue categories for the iter_swap arguments, as shown below (in the syntax of the Concepts TS):
template <class I1, class I2>
concept bool IndirectlySwappable() {

return Readable<I1>() && Readable<I2>() &&
requires (const I1 i1, const I2 i2) { [Editor's note: Implicit expression variations here.]

iter_swap(i1, i2);
iter_swap(i2, i1);
iter_swap(i1, i1);
iter_swap(i2, i2);

};
}

It was changed in a misguided effort to generalize iter_swap to make it possible to swap instances of types that
use pointer-like syntax but do not represent an indirection, like std::optional.

The fix is to restore the formulation that made use of implicit expression variations. iter_swap will still be
usable with types like std::optional, but an algorithm making use of such syntax cannot be constrained with
indirectly_swappable after the proposed change.

2.3 Problem #3: shared_ptr<int>& does not satisfy readable

In the formulation of readable in [N5410], the type std::shared_ptr<int> models readable, but
std::shared_ptr<int>& does not. This is an unintended consequence of the particular implementation of
iter_value_t and how it dispatches to std::readable_traits. In particular, in [N5410] readable is defined
in terms of iter_value_t<In> which does not strip top-level reference qualifiers from readable_traits<In>
before looking for a nested ::value_type.

The specification of readable_traits<In> gives it a nested ::value_type if In::value_type is well-formed
and names a type. That is not the case if In is a reference type.

One possible fix is to define readable<In> in terms of iter_value_t<remove_reference_t<In>>. However,
the fix to readable described above in Problem #1 – that is, changing the definition of iter_value_t to strip
top-level cv and ref qualification – suffices to fix this problem as well.

3

3 Implementation Experience
The proposed resolution below has been applied to range-v3. All tests passed after the change.

After making the suggested change to the readable concept, someone filed a bug about std::optional no
longer satisfying readable. The code demonstrating the problem is shown below:
// This compiled before the change but not after.
views::generate([](){ return std::optional<int>{ 1 }; }) | views::indirect;

In range-v3 views::indirect is a view that transforms a range of readable values into a range of the values to
which the readables refer. Implicit in views::indirect is the assumption that the readables actually represent
an indirection; that is, views::indirect assumes the reference returned by a readable object’s operator* is
valid even after the readable object itself is destroyed. This is certainly not the case for std::optional or any
other readable-like types that do not represent an indirection. In short, this change helped the user to find a
source of undefined behavior in their code, which reinforces the authors’ belief that this change is correct.

4 Proposed Resolution
The following proposed resolution resolves the three issues described above in a consistent way.

[Editor’s note: Change [incrementable.traits]/p2 as follows (to be consistent with the change to iter_value_t
below):]

2 The type iter_difference_t<I> denotes
2.1 incrementable_traits<remove_cvref_t<I>>::difference_type if iterator_traits<remove_cvref_t<I>>

names a specialization generated from the primary template, and
2.2 iterator_traits<remove_cvref_t<I>>::difference_type otherwise.

[Editor’s note: Change [readable.traits]/p2 as follows:]
2 The type iter_value_t<I> denotes

2.1 readable_traits<remove_cvref_t<I>>::value_type if iterator_traits<remove_cvref_t<I>>
names a specialization generated from the primary template, and

2.2 iterator_traits<remove_cvref_t<I>>::value_type otherwise.

[Editor’s note: The following change to [iterator.cust.swap]/p2 is a clean-up made possible by the above change
to iter_value_t:]

2 Let iter-exchange-move be the exposition-only function:

template<class X, class Y>
constexpr iter_value_t<remove_reference_t<X>> iter-exchange-move (X&& x, Y&& y)

noexcept(noexcept(iter_value_t<remove_reference_t<X>>(iter_move(x))) &&
noexcept(*x = iter_move(y)));

3 Effects: Equivalent to:
iter_value_t<remove_reference_t<X>> old_value(iter_move(x));
*x = iter_move(y);
return old_value;

[Editor’s note: Change [iterator.concept.readable]/p1 as follows:]
1 Types that are indirectly readable by applying operator* model the readable concept, including pointers,

smart pointers, and iterators.

4

https://github.com/ericniebler/range-v3/issues/1330

template<class In>
concept readablereadable-impl =

requires(const In in) {
typename iter_value_t<In>;
typename iter_reference_t<In>;
typename iter_rvalue_reference_t<In>;
{ *in } -> same_as<iter_reference_t<In>>;
{ iter_move(in) } -> same_as<iter_rvalue_reference_t<In>>;

} &&
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;

template<class In>
concept readable =

readable-impl<remove_cvref_t<In>>;

[Editor’s note: Change [alg.req.ind.swap] as follows:]
1 The indirectly_swappable concept specifies a swappable relationship between the values referenced by two

readable types.

template<class I1, class I2 = I1>
concept indirectly_swappable =

readable<I1> && readable<I2> &&
requires(I1&const I1 i1, I2&const I2 i2) {

ranges::iter_swap(i1, i1);
ranges::iter_swap(i2, i2);
ranges::iter_swap(i1, i2);
ranges::iter_swap(i2, i1);

};

[Editor’s note: Change [algorithms.requirements]/p12 as follows (this is merely a simplification):]
12 In the description of the algorithms, operator + is used for some of the iterator categories for which it does

not have to be defined. In these cases the semantics of a + n are the same as those of

auto tmp = a;
for (; n < 0; ++n) --tmp;
for (; n > 0; --n) ++tmp;
return tmp;

Similarly, operator - is used for some combinations of iterators and sentinel types for which it does not have
to be defined. If [a, b) denotes a range, the semantics of b - a in these cases are the same as those of

iter_difference_t<remove_reference_t<decltype(a)>> n = 0;
for (auto tmp = a; tmp != b; ++tmp) ++n;
return n;

and if [b, a) denotes a range, the same as those of

iter_difference_t<remove_reference_t<decltype(b)>> n = 0;
for (auto tmp = b; tmp != a; ++tmp) --n;
return n;

[Editor’s note: Change [istreambuf.iterator.proxy]/p1 as follows:]

5

1 Class istreambuf_iterator<charT,traits>::proxy is for exposition only. An implementation
is permitted to provide equivalent functionality without providing a class with this name. Class
istreambuf_iterator<charT, traits>::proxy provides a temporary placeholder as the return value of
the postincrement operator (operator++). It keeps the character pointed to by the previous value of the
iterator for some possible future access to get the character.

namespace std {
template<class charT, class traits>
class istreambuf_iterator<charT, traits>::proxy { // exposition only

charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy (charT c, basic_streambuf<charT,traits>* sbuf)

: keep_(c), sbuf_(sbuf) { }
public:

charT operator*() const { return keep_; }
};

}

6

	Abstract
	The Problems
	Problem #1: The readable concept is sensitive to const-ness and value category
	Problem #2: indirectly_swappable only tests that iter_swap is callable with lvalue iterators
	Problem #3: shared_ptr<int>& does not satisfy readable

	Implementation Experience
	Proposed Resolution

