In-Source Mechanism to Identify Importable Headers
Document #: P1905R0

Date: 2019-10-06

Project: Programming Language C++

Audience: SG-15, EWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Target

C++20

Abstract

The standard specifies that an importable header is a member of an implementation-defined set of
headers. This paper proposes a mechanism to specify that a header is importable from within the
source code of that header.

Motivation

Defining the set of importable header is accepted to require the collaboration between

o Developers, as determining whether a header is importable (not affected by the state of the
preprocessor), cannot be easily computed automatically.

e Build systems which are the primary tool by which developers can specify how a program can
be compiled.

e The compiler which needs to know the list of importable header.

And of course, compiling a program often involves multiple build systems that do not share the
same build file formats.

SG-15 is looking at recommending a set of formats and/or protocols that could be used to share
whether a given header can be considered importable across these entities, however that presents
several limitations:

o All tools involved need to be able to specify, share and consume that information which, given
the state of the ecosystem, will take many years.

o It puts more knowledge about a program in the build system, and less in the source which
makes maintenance more complicated and notably makes it harder to replace the build system.

mailto:corentin.jabot@gmail.com

o It makes it harder to develop and use zero-configuration build systems as well as header-only
libraries - which would now need to be configured in build scripts so they can benefit from
being importable.

e It put the decision of whether a library is importable on the build system maintainer rather
than on the person who wrote the header - But only the people maintaining the code know
whether a header is and will remain importable.

Proposal

We propose a #pragma importable which, when it appears at the beginning of a header indicates
that the included header is importable.

This can be used:
o By compilers to treat the included header as an imported header unit (see 15.2.7)

e By build systems providing pre-scanning to pre-compile the importable header if the imple-
mentation supports that use case.

e By IDE and other tools to treat the header as importable which can have drastic performance
benefits.

This attribute would not replace other implementation-defined mechanisms to specify that a header
is importable, but rather add a new one.

[Note: Because the proposed mechanism is designed to be ignorable, it does not replace nor alleviate
the need for include guards or pragma once. — end note|

Why a pragma?

The syntax chosen to identify importable headers mustn’t make the program ill-formed if compiled
with a C++417 compiler or one that does not understand that syntax. In general, whether an
importable header is imported or included should not affect the behavior of a program.

This leave us with 2 choices:
e A pragma
e An attribute (eg. [[importable]])

However, a pragma has a few benefits, most notably it can be handled in phase 4 and is already
specified to appear at the beginning of a line, which makes it easier for tooling to deal with. It
also matches the behavior of whether an include is treated as in import - decision handled during
prepossessing.

Having a standard #pragma directive is novel, however, all existing implementation tested (gcc, clang,
msve, icc) correctly ignore a #pragma importable (none of the implementation give a meaning to
#pragma importable), so the standard can safely claim that syntax.

It would ultimately be possible to use an attribute if there was a preference for that.

Proposed Wording

o Pragma directive [cpp.pragmal]

A preprocessing directive of the form

pragma importable
Indicates that the header or source file being processed and identified by its header-name
is an importable header ([module.import]).

In the header or source file being processed, this directive shall not appear after a
#define or #include preprocessing directive or any preprocessing-token.

[Note: It is implementation defined whether the header or source file being processed
will be treated as if it were imported by an import directive ([cpp.import]) of the form:

import header-name ; new-line
— end note]

A preprocessing directive of the form

pragma o, pp-tokens new-line
causes the implementation to behave in an implementation-defined manner. The be-
havior might cause translation to fail or cause the translator or the resulting program
to behave in a non-conforming manner. Any pragma that is not recognized by the
implementation is ignored.

References

[N4830] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.1link/n4830

https://wg21.link/n4830

	1 Target
	2 Abstract
	3 Motivation
	4 Proposal
	4.1 Why a pragma?

	5 Proposed Wording
	6 Pragma directive

