

Document No. P2006R0
Date 2020-01-13
Reply To Lewis Baker <​lbaker@fb.com​>

Eric Niebler <​eniebler@fb.com​>
Kirk Shoop <​kirkshoop@fb.com​>
Lee Howes <​lwh@fb.com​>

Audience SG1, LEWG
Targeting C++23

Eliminating heap-allocations in
sender/receiver with connect()/start() as
basis operations

Abstract
The "Unified executors" paper, P0443R11, was recently updated to incorporate the sender/receiver
concepts as the basis for representing composable asynchronous operations in the standard library.

The basis operation for a sender as specified in P0443R11 is ​execution::submit() ​, which accepts
a sender and a receiver, binds the receiver to the sender and launches the operation. Once the operation
is launched, the sender is responsible for sending the result of the operation to the receiver by calling
one of the completion-signalling operations (​set_value() ​, ​set_error() ​ or ​set_done() ​) when the
operation eventually completes.

In order to satisfy this contract the ​submit() ​ function needs to ensure that the receiver, or a
move-constructed copy of the receiver, remains alive until the operation completes so that the result can
be delivered to it. This generally means that a sender that completes asynchronously will need to
heap-allocate some storage to hold a copy of the receiver, along with any other state needed from the
sender, so that it will remain valid until the operation completes.

While many composed operations can avoid additional allocations by bundling their state into a new
receiver passed to a child operation and delegating the responsibility for keeping it alive to the child
operation, there will still generally be a need for a heap-allocation for each leaf operation.

However, the same is not true with the design of coroutines and awaitables. An awaitable type is able to
inline the storage for its operation-state into the coroutine-frame of the awaiting coroutine by returning a
temporary object from its ​operator co_await() ​, avoiding the need to heap-allocate this object
internally.

mailto:lbaker@fb.com
mailto:eniebler@fb.com
mailto:kirkshoop@fb.com
mailto:lwh@fb.com

We found that, by taking a similar approach with sender/receiver and defining a basis operation that lets
the sender return its operation-state as an object to the caller, the sender is able to delegate the
responsibility for deciding where the operation-state object should be allocated to the caller instead of
having to heap-allocate it itself internally.

This allows the caller to choose the most appropriate location for the operation-state of an operation it's
invoking. For example, an algorithm like ​sync_wait() ​ might choose to store it on the stack, an
operator co_await() ​ algorithm might choose to store it as a local variable within the coroutine
frame, while a sender algorithm like ​via() ​ might choose to store it inline in the parent operation-state as
a data-member.

The core change that this paper proposes is refining the sender concept to be defined in terms of
two new basis operations:

● connect(sender auto&&, receiver auto&&) -> operation_state
Connects a sender to a receiver and returns the operation-state object that stores the state of that
operation.

● start(operation_state auto&) noexcept -> void
Starts the operation (if not already started). An operation is not allowed to signal completion until
it has been started.

There are several other related changes in support of this:

● Retain and redefine the ​submit() ​ operation as a customisable algorithm that has a default
implementation in terms of ​connect() ​ and ​start() ​.

● Add an ​operation_state ​ concept.
● Add two new type-traits queries:

connect_result_t<S, R>

is_nothrow_receiver_of_v<R, An...>

In addition to these changes, this paper also incorporates a number of bugfixes to wording in P0443R11
discovered while drafting these changes.

Motivation
This paper proposes a refinement of the sender/receiver design to split out the ​submit() ​ operation into
two more fundamental basis operations; ​connect() ​, which takes a sender and a receiver and returns
an object that contains the state of that async operation, and ​start() ​, which is used to launch the
operation.

There are a number of motivations for doing this, each of which will be explored in more detail below:

● It eliminates the need for additional heap-allocations when awaiting senders within a coroutine,
allowing the operation-state to be allocated as a local variable in the coroutine frame.

● It allows composed operations to be defined that do not require any heap allocations. This should
allow usage of a reasonable subset of async algorithms in contexts that do not normally allow
heap-allocations, such as embedded or real-time systems.

● It allows separating the preparation of a sender for execution from the actual invocation of that
operation, satisfying one of the desires expressed in P1658R0.

● It makes it easier and more efficient to satisfy the sender/receiver contract in the presence of
exceptions during operation launch.

Lifetime impedence mismatch with coroutines
The paper "Unifying asynchronous APIs in the C++ standard library" P1341R0 looked at the
interoperability of sender/receiver with coroutines and showed how senders could be adapted to become
awaitables and how awaitables could be adapted to become senders.

However, as P1341R0 identified, adapting between sender/awaitable (in either direction) typically incurs
an additional heap-allocation. This is due to senders and awaitables generally having inverted ownership
models.

The existing sender/receiver ownership model
With the ​submit() ​-based asynchronous model of sender/receiver, the ​submit() ​ implementation
cannot typically assume that either the sender or the receiver passed to it will live beyond the call to
submit() ​. This means for senders that complete asynchronously the implementation of ​submit() ​ will
typically need to allocate storage to hold the receiver (so it can deliver the result) as well as any
additional state needed by the sender for the duration of the operation. This state is often refered to as
the "operation state".

See ​Example 2 in Appendix A.

Note that some senders may be able to delegate the allocation of the operation-state to a child
operation's ​submit() ​ implementation by wrapping up the the receiver and other state into a new

receiver wrapper and passing this wrapper to the ​submit() ​ call of the child operation.
See ​Example 1 in Appendix A​.

This delegation can be recursively composed, potentially allowing the state of an entire chain of
operations to be aggregated into a single receiver object passed to the leaf operation. However,
leaf-operations will typically still need to allocate as, by definition of being a leaf operation, they won't
have any other senders they can delegate to.

In this model, the leaf operation allocates and owns storage required to store the operation state and the
leaf operation is responsible for ensuring that this storage remains alive until the operation completes.

So in the sender/receiver model we can coalesce allocations for a chain of operations and have the the
allocation performed only by the leaf-operation. Note that for an operation that is composed of multiple
leaf operations, however, it will still typically require multiple heap-allocations over the lifetime of the
operation.

The coroutine ownership model
With coroutines the ownership model is reversed.

An asynchronous operation is represented using an awaitable object when using coroutines instead of a
sender. The user passes the awaitable object to a ​co_await ​ expression which the compiler translates
into a sequence of calls to various customisation points.

The compiler translates the expression '​co_await ​expr​'​ expression into something roughly equivalent
to the following (some casts omitted for brevity):
// 'co_await ​expr​' becomes (roughly)
decltype ​(​auto ​) __value = ​expr​;
decltype ​(​auto ​) __awaitable = ​promise​.await_transform(__value);
decltype ​(​auto ​) __awaiter = __awaitable. ​operator co_await ​();
if ​ (!__awaiter.await_ready()) {
 ​// <suspend-coroutine>
 __awaiter.await_suspend(coroutine_handle<promise_type>::from_promise(​promise​));
 ​// <return-to-caller-or-resumer>
}

// <resume-point>

__awaiter.await_resume(); ​// This produces the result of the co_await expression

When a coroutine is suspended at a suspension point, the compiler is required to maintain the lifetime of
any objects currently in-scope - execution returns to the caller/resumer without exiting any scopes of the
coroutine). The compiler achieves this by placing any objects whose lifetime spans a suspension point
into the coroutine-frame, which is typically allocated on the heap instead of on the stack, and thus can
persist beyond the coroutine suspending and returning execution to its caller/resumer.

The important thing to note in the expansion of a ​co_await ​ expression above is that the awaitable
object has the opportunity to return an object from its ​operator co_await() ​ method and this

return-value becomes a temporary object whose lifetime extends until the end of the full-expression (ie.
at the next semicolon). By construction this object will span the suspend-point (​await_ready() ​ is
called before the suspend-point and ​await_resume() ​ is called after the suspend-point) and so the
compiler will ensure that storage for the awaiter object is reserved in the coroutine frame of the awaiting
coroutine.

Implementations of awaitable types that represent async operations can use this behaviour to their
advantage to externalise the allocation of the operation-state by storing the operation-state inline in the
awaiting coroutine's coroutine-frame, thus avoiding the need for an additional heap-allocation to store it.

See ​Example 4 in Appendix A​ which shows an implementation of a simple allocation-free executor that
uses this technique.

This same strategy of inlining storage of child operation's state into the storage for parent operation also
occurs when the compiler applies the coroutine heap-allocation elision optimisation . This optimisation 1

works by allowing the compiler to elide heap-allocations for child coroutine-frames whose lifetimes are
strictly nested within the lifetime of the caller by inlining the allocation into storage space reserved for it in
the parent coroutine-frame.

Taken to its limit, this strategy tends towards a single allocation per high-level operation that
contains enough storage for the entire tree of child operations​ (assuming the storage requirements
of the child operations can be statically calculated by the compiler).

Comparing Sender/Receiver and Coroutine Lifetime Models
Taking a step-back we can make some comparisons of the differences of ownership/lifetime models in
submit()-based sender/receiver and coroutines/awaitables:

Sender/Receiver Coroutines/Awaitables

Coalesces allocations/state into child operations
by wrapping receivers.

Coalesces allocations into parent operations by
returning state from ​operator co_await()
and by HALO inlining child coroutine-frames.

Tends towards a single allocation for each
leaf-level operation.

Tends towards a single allocation per top-level
operation.

Type of operation-state is hidden from consumer -
an internal implementation detail.

Type of operation-state is exposed to caller
allowing its storage to be composed/inlined into
parent operation-state.

Producer is responsible for keeping
operation-state alive until the operation completes

Consumer is responsible for keeping the
operation-state alive until the operation completes

1 P0981R0 - Halo: coroutine Heap Allocation eLision Optimization: the joint response (R.Smith, G.Nishanov)

and destroying the operation-state after it
completes.

and destroying the operation-state after it
completes.

Often requires moving state of higher-level
operations between operation-states of different
leaf operations many times as different leaf
operations come and go.

Allows storing state of higher-level operations in a
stable location (the higher-level operation-state)
and passing references to that operation-state
into child operations (eg. via the
coroutine_handle)

Higher-level operations will often need a number
of separate heap-allocations over its lifetime as
different leaf operations come and go. Allows
dynamically adjusting memory usage over time,
potentially reducing overall memory pressure.

Higher-level operations tend to allocate a single
larger allocation, reducing the overall number of
allocations, but some of this storage may go
unused during some parts of the operation,
potentially leading to higher memory pressure in
some cases.

Adapting between sender/receiver and coroutines
One of the goals for the sender/receiver design has been to integrate well with coroutines, allowing
applications to write asynchronous code in a synchronous style, using the co_await keyword to suspend
the coroutine until the asynchronous operation completes.

The paper P1341R0 showed that it is possible to adapt typed-senders to be awaitable and that it's
possible to adapt awaitables to become senders. It also discussed how the inverted ownership model
resulted in the overhead of an extra heap-allocation whenever we do this.

When we adapt an awaitable to become a sender we need to heap-allocate a new coroutine-frame that
can co_await the awaitable, get the result and then pass the result to a receiver. This coroutine-frame is
not generally eligible for the heap-allocation elision optimisation (HALO) as the lifetime of the coroutine is
not nested within the lifetime of the caller.

When we adapt a sender to become an awaitable, the sender will generally need to heap-allocate the
operation-state at the leaf-operation as the sender does not know that the coroutine will implicitly keep
the sender and receiver passed to ​submit() ​ alive beyond the call to ​submit() ​.

The paper P1341R0 thus proposed to make the core concept for representing asynchronous operations
a Task, which required implementations to provide both the sender and awaitable interfaces so that tasks
could be used either in code that used senders or in code that used coroutines interchangeably.
Implementations could provide one of the implementations and the other would have a default
implementation provided, albeit with some overhead, or it could provide native implementations of both
sender and awaitable interfaces to achieve better performance.

There were a few downsides to this approach, however.

● It forced a dependency of the core concepts on coroutines (​operator co_await() ​ and
coroutine_handle ​ type) and this meant that implementers that may not be able to initially
implement coroutines for their platforms would be unable to implement the core asynchronous
concepts.

● To achieve the best performance for both sender/receiver and coroutines would require
implementing every algorithm twice - once under sender/receiver using its ownership model and
once under coroutines for its ownership model.
This would not only be required for your algorithm but for the entire closure of algorithms that your
algorithm is built on.
Having to implement two versions of each algorithm places a high burden on implementers of
these algorithms.

Thus, we no longer recommend pursuing the Task concept that requires both coroutines and
sender/receiver interfaces to be implemented.

The changes proposed by this paper change the ownership model of sender/receiver to be the same as
that of coroutines. This allows us to instead build a generic implementation of ​operator co_await()
that can work with any ​typed_sender ​ and that does not require any additional heap-allocations.

This eliminates the need to implement async algorithms twice to be able to get efficient usage with both
coroutines and senders. An async algorithm can just implement the sender-interface and can rely on the
default ​operator co_await() ​ implementation for senders to allow it to be efficiently used in
co_await ​ expressions.

Note that a particular type that implements the sender concept can still choose to provide a custom
implementation of ​operator co_await() ​ if desired.

Simplifying exception-safe implementations of sender algorithms
The semantics of the ​submit() ​ method as described in P0443R11 required that the implementation of
submit() ​ would eventually call one of the receiver methods that indicates completion of the operation if
submit() ​ returns normally.

While the specification was silent on the semantics if ​submit() ​ were to exit with an exception, the intent
was that ​submit() ​ would not subsequently invoke (or have successfully invoked) any of the
completion-signalling functions on the receiver.

This allows the caller to catch the exception thrown out of ​submit() ​ if desired and either handle the
error or pass the error onto the caller's receiver by calling ​set_error() ​.

However, implementations of algorithms that are themselves senders must be careful when
implementing this logic to ensure that they are able to correctly handle an exception propagating from the

call to ​submit() ​. If it naively moves its receiver into the receiver wrapper it passes to a child operation's
submit() ​ function then if that ​submit() ​ function invocation throws then the caller may be left with its
receiver now being in a moved-from state and thus not being able to deliver a result to its receiver.

A good demonstration of the problem is in the implementation of a ​sequence() ​ algorithm that takes two
senders and launches the two operations in sequence - only calling ​submit() ​ on the second sender
once the first sender has completed with ​set_value() ​.

Example 1 in Appendix B​ highlights the problem with a naive implementation of this algorithm.

One strategy for implementing a correct, exception-safe implementation is for the caller to store its
receiver in a stable location and then only pass a pointer or reference to that receiver to the
receiver-wrapper passed to the child operation's ​submit() ​ function.

However, under the sender/receiver design described in P0443R11, getting access to a stable location
for the receiver would typically require a heap-allocation.

Example 2 in Appendix B​ shows a solution that makes use of a shared_ptr to to allow correctly handling
exceptions that might be thrown from the second sender's submit().

The changes to the sender/receiver design proposed by this paper provides a solution to this that does
not require a heap-allocation to store the receiver. The receiver can be stored in the operation-state
object returned from ​connect() ​, which the caller is required to store in a stable location until the
operation completes. Then we can pass a receiver-wrapper into the child operation that just holds a
pointer to this operation-state and can get access to the receiver via that pointer.

Example 3 in Appendix B​ shows the alternative ​connect() ​/​start() ​-based implementation of the
sequence() ​ algorithm for comparison.

This allows some algorithms to further reduce the number of heap-allocations required to implement
them compared to the ​submit() ​-based implementation.

Ability to separate resource allocation for operation from launch
The paper P1658R0 "Suggestions for Consensus on Executors" suggested factoring submit() into more
basic operations - a finalize() and a start().

P1658R0 makes the observation that the submit() operation signals that the sender is 1. ready for
execution and 2. may be executed immediately, and suggests that it would be valuable to be able to
decouple the cost of readying a sender from its launch.

Examples of expensive finalization mentioned in P1658R0 include:

● Memory allocation of temporary objects required during execution
● Just-in-time compilation of heterogeneous compute kernels
● Instantiation of task graphs
● Serialization of descriptions of work to be executed remotely

Being able to control where the expensive parts of launching an operation occurs is important for
performance-conscious code.

Splitting the ​submit() ​ operation up into a ​connect() ​ and ​start() ​ operations should make this
possible.

Wording
This wording change is described as a delta to P0443R11.

Update subsection “Header ​<execution> ​ synopsis” as follows:

// Customization points:

inline namespace ​unspecified​ {
 inline constexpr ​unspecified​ set_value = ​unspecified​;

 inline constexpr ​unspecified​ set_done = ​unspecified​;

 inline constexpr ​unspecified​ set_error = ​unspecified​;

 inline constexpr ​unspecified​ execute = ​unspecified​;

 ​inline constexpr ​unspecified​ connect = ​unspecified​;

 ​inline constexpr ​unspecified​ start = ​unspecified​;

 inline constexpr ​unspecified​ submit = ​unspecified​;

 inline constexpr ​unspecified​ schedule = ​unspecified​;

 inline constexpr ​unspecified​ bulk_execute = ​unspecified​;
}

template<class S, class R>

 ​using connect_result_t = invoke_result_t<decltype(connect), S, R>;

template<class, class> struct ​as-receiver​; // exposition only

template<class, class> struct ​as-invocable​; // exposition only

// Concepts:

template<class T, class E = exception_ptr>

 concept receiver = ​see-below​;

template<class T, class... An>

 concept receiver_of = ​see-below​;

template<class R, class... An>

 ​inline constexpr bool is_nothrow_receiver_of_v =
 ​receiver_of<R, An...> &&
 ​is_nothrow_invocable_v<decltype(set_value), R, An...>;

template<class O>

 ​concept operation_state = ​see-below​;

template<class S>

 concept sender = ​see-below​;

template<class S>

 concept typed_sender = ​see-below​;

... as before

// Sender and receiver utilities type

class sink_receiver;

namespace ​unspecified​ { struct sender_base {}; }
using ​unspecified​::sender_base;

template<class S> struct sender_traits;

Change 1.2.2 “Invocable archetype” as follows:

The name ​execution::invocable_archetype ​ is an implementation-defined type​ ​that,
along with any argument pack, models ​invocable ​such that
invocable<execution::invocable_archetype&> ​ is ​true ​.

A program that creates an instance of execution::invocable_archetype is ill-formed.

Change 1.2.3.4 ​execution::execute ​, bullet 3 as follows:

Otherwise, ​if ​F ​ is not an instance of ​as-invocable​< ​R​, E> ​ for some type ​R​, and
invocable<remove_cvref_t<F>&> && sender_to<E,

as-receiver​<remove_cvref_t<F>, E>> ​ is ​true ​,​ ​execution::submit(e,
as-receiver​< ​remove_cvref_t< ​F ​>, E ​> ​(​{ ​forward<F>(f) ​) ​} ​) ​ ​if ​E ​ and
as-receiver​<F> ​ model ​sender_to ​, where ​as-receiver​ is some implementation-defined
class template equivalent to:

template< ​invocable ​class ​ F ​, class ​>
struct ​as-receiver​ {
private:

 ​using invocable_type = std::remove_cvref_t<F>;
 ​invocable_type ​F ​ f_;
public:

 ​explicit ​as-receiver​(invocable_type&& f)
 ​: f_(move_if_noexcept(f)) {}
 ​explicit ​as-receiver​(const invocable_type& f) : f_(f) {}
 ​as-receiver​(​as-receiver​&& other) = default;
 void set_value() ​noexcept(is_nothrow_invocable_v<F&>) ​ {
 invoke(f_);

 }

 ​[[noreturn]] ​ void set_error(std::exception_ptr) ​noexcept ​ {
 terminate();

 }

 void set_done() noexcept {}

};

Before subsection 1.2.3.5 ​execution::submit ​, add the following two subsections, and renumber the
subsequent subsections.

1.2.3.x ​execution::connect

The name ​execution::connect ​ denotes a customization point object. The expression
execution::connect(S, R) ​ for some subexpressions ​S ​ and ​R ​ is expression-equivalent to:

● S.connect(R) ​, if that expression is valid, if its type satisfies ​operation_state ​, and if
the type of ​S ​ satisfies ​sender ​.

● Otherwise, ​connect(S, R) ​, if that expression is valid, if its type satisfies
operation_state ​, and if the type of ​S ​ satisfies ​sender ​, with overload resolution
performed in a context that includes the declaration

void connect();

and that does not include a declaration of ​execution::connect ​.

● Otherwise, ​as-operation​{S, R} ​, if ​R ​ is not an instance of ​as-receiver​< ​F​, S> ​ for
some type ​F​, and if ​receiver_of<T> && executor_of<U, ​as-invocable​<T,
S>> ​ is ​true ​ where ​T ​ is the type of ​R ​ without ​cv​-qualification and ​U ​ is the type of ​S ​ without
cv​-qualification, and where ​as-operation​ is an implementation-defined class equivalent
to

struct ​as-operation​ {
 U e_;

 T r_;

 void start() noexcept try {

 execution::execute(

 std::move(e_), ​as-invocable​<T, S>{r_});
 } catch(...) {

 execution::set_error(

 std::move(r_), current_exception());

 }

};

and ​as-invocable​ is a class template equivalent to the following:

template<class R, class>

struct ​as-invocable​ {
 R* r_ ;

 explicit ​as-invocable​(R& r) noexcept
 : r_(std::addressof(r)) {}

 ​as-invocable​(​as-invocable​&& other) noexcept
 : r_(std::exchange(other.r_, nullptr)) {}

 ~ ​as-invocable​() {
 if(r_)

 execution::set_done((R&&) *r_);

 }

 void operator()() & noexcept {

 try {

 execution::set_value((R&&) *r_);

 } catch(...) {

 execution::set_error(

 (R&&) *r_, current_exception());

 }

 r_ = nullptr;

 }

};

● Otherwise, ​execution::connect(S, R) ​ is ill-formed.

1.2.3.x ​execution::start

The name ​execution::start ​ denotes a customization point object. The expression
execution::start(O) ​ for some lvalue subexpression ​O ​ is expression-equivalent to:

● O.start() ​, if that expression is valid.
● Otherwise, ​start(O) ​, if that expression is valid, with overload resolution performed in a

context that includes the declaration

void start();

and that does not include a declaration of ​execution::start ​.

● Otherwise, ​execution::start(O) ​ is ill-formed.

Change 1.2.3.5 “​execution::submit ​” in recognition of the fact that ​submit ​ is a customizable
algorithm that has a default implementation in terms of ​connect ​/​start ​ as follows:

The name ​execution::submit ​ denotes a customization point object.

A receiver object is ​submitted for execution via a sender​ by scheduling the eventual evaluation of
one of the receiver's value, error, or done channels.

For some subexpressions ​s ​ and ​r ​, let ​S ​ be a type such that ​decltype((s)) ​ is ​S ​ and let ​R ​ be a
type such that ​decltype((r)) ​ is ​R ​. The expression ​execution::submit(s, r) ​ is
ill-formed if ​R does not model receiver, or if S does not model either sender or
executor​sender_to<S, R> ​ is not ​true ​. Otherwise, it is expression-equivalent to:

● s.submit(r) ​, if that expression is valid and ​S ​ models ​sender ​. If the function selected
does not submit the receiver object ​r ​ via the sender ​s ​, the program is ill-formed with no
diagnostic required.

● Otherwise, ​submit(s, r) ​, if that expression is valid and ​S ​ models ​sender ​, with
overload resolution performed in a context that includes the declaration

void submit();

and that does not include a declaration of ​execution::submit ​. If the function selected
by overload resolution does not submit the receiver object ​r ​ via the sender ​s ​, the program
is ill-formed with no diagnostic required.

● Otherwise, execution::execute(s,​as-invocable​<R>(forward<R>(r))) if S and
as-invocable​<R> model executor, where ​as-invocable​ is some implementation-defined
class template equivalent ​to:

template<receiver R>

struct as-invocable {

private:

 using receiver_type = std::remove_cvref_t<R>;

 std::optional<receiver_type> r_ {};

 void try_init_(auto&& r) {

 try {

 r_.emplace((decltype(r)&&) r);

 } catch(...) {

 execution::set_error(r, current_exception());

 }

 }

public:

 explicit as-invocable(receiver_type&& r) {

 try_init_(move_if_noexcept(r));

 }

 explicit as-invocable(const receiver_type& r) {

 try_init_(r);

 }

 as-invocable(as-invocable&& other) {

 if(other.r_) {

 try_init_(move_if_noexcept(*other.r_));

 other.r_.reset();

 }

 }

 ~as-invocable() {

 if(r_)

 execution::set_done(*r_);

 }

 void operator()() {

 try {

 execution::set_value(*r_);

 } catch(...) {

 execution::set_error(*r_, current_exception());

 }

 r_.reset();

 }

};

● Otherwise, ​execution::start((new ​submit-receiver​<S, R>{s,
r})->state_) ​, where ​submit-receiver​ is an implementation-defined class template
equivalent to

template<class S, class R>

struct ​submit-receiver​ {

 struct wrap {

 ​submit-receiver​* p_;
 template<class...As>

 requires receiver_of<R, As...>

 void set_value(As&&... as) && {

 execution::set_value(

 std::move(p_->r_), (As&&) as...);

 delete p_;

 }

 template<class E>

 requires receiver<R, E>

 void set_error(E&& e) && noexcept {

 execution::set_error(

 std::move(p_->r_), (E&&) e);

 delete p_;

 }

 void set_done() && noexcept {

 execution::set_done(std::move(p_->r_));

 delete p_;

 }

 };

 remove_cvref_t<R> r_;

 connect_result_t<S, wrap> state_;

 ​submit-receiver​(S&& s, R&& r)
 : r_((R&&) r)

 , state_(execution::connect((S&&) s, wrap{this}))

 {}

};

Change 1.2.3.6 ​execution::schedule ​ as follows:

The name ​execution::schedule ​ denotes a customization point object. ​For some
subexpression ​s ​, let ​S ​ be a type such that ​decltype((s)) ​ is ​S ​.​ The expression
execution::schedule(​S ​s ​) ​ ​for some subexpression ​S ​ is expression-equivalent to:

● S ​s ​.schedule() ​, if that expression is valid and its type ​N​ models ​sender ​.
● Otherwise, ​schedule(​S ​s ​) ​, if that expression is valid and its type ​N​ models ​sender ​ with

overload resolution performed in a context that includes the declaration

void schedule();

and that does not include a declaration of ​execution::schedule ​.

● Otherwise, ​decay-copy​(S) if the type S models sender.

● Otherwise, ​as-sender​<remove_cvref_t<S>>{s} ​ if ​S ​ satisfies ​executor ​, where
as-sender​ is an implementation-defined class template equivalent to

template<class E>

struct ​as-sender​ {
private:

 E ex_;

public:

 template<template<class...> class Tuple,

 template<class...> class Variant>

 using value_types = Variant<Tuple<>>;

 template<template<class...> class Variant>

 using error_types = Variant<std::exception_ptr>;

 static constexpr bool sends_done = true;

 explicit ​as-sender​(E e)
 : ex_((E&&) e) {}

 template<class R>

 requires receiver_of<R>

 connect_result_t<E, R> connect(R&& r) && {

 return execution::connect((E&&) ex_, (R&&) r);

 }

 template<class R>

 requires receiver_of<R>

 connect_result_t<const E &, R> connect(R&& r) const & {

 return execution::connect(ex_, (R&&) r);

 }

};

● Otherwise, ​execution::schedule(​S ​s ​) ​ is ill-formed.

Merge subsections 1.2.4 and 1.2.5 into a new subsection “Concepts ​receiver ​ and ​receiver_of ​”
and change them as follows:

XXX TODO The receiver concept...​A receiver represents the continuation of an asynchronous
operation. An asynchronous operation may complete with a (possibly empty) set of values, an
error, or it may be cancelled. A receiver has three principal operations corresponding to the three
ways an asynchronous operation may complete: ​set_value ​, ​set_error ​, and ​set_done ​.
These are collectively known as a receiver’s ​completion-signal operations​.

// exposition only:

template<class T>

inline constexpr bool is-nothrow-move-or-copy-constructible =

 ​is_nothrow_move_constructible<T> ||
 ​copy_constructible<T>;

template<class T, class E = exception_ptr>

concept receiver =

 move_constructible<remove_cvref_t<T>> &&

 ​constructible_from<remove_cvref_t<T>, T> &&
 ​(is-nothrow-move-or-copy-constructible<remove_cvref_t<T>>) &&
 requires(​remove_cvref_t< ​T ​> ​&& t, E&& e) {
 { execution::set_done(​(T&&) t ​std::move(t) ​) } noexcept;
 { execution::set_error(​(T&&) t ​std::move(t) ​, (E&&) e) }
noexcept;

 };

template<class T, class... An>

concept receiver_of =

 receiver<T> &&

 requires(​remove_cvref_t< ​T ​> ​&& t, An&&... an) {
 execution::set_value(​(T&&) t ​std::move(t) ​, (An&&) an...);
 };

The receiver’s completion-signal operations have semantic requirements that are collectively
known as the ​receiver contract​, described below:

● None of a receiver’s completion-signal operations shall be invoked before
execution::start ​ has been called on the operation state object that was returned by
execution::connect ​ to connect that receiver to a sender.

● Once ​execution::start ​ has been called on the operation state object, exactly one of
the receiver’s completion-signal operations shall complete non-exceptionally before the
receiver is destroyed.

● If ​execution::set_value ​ exits with an exception, it is still valid to call
execution::set_error ​ or ​execution::set_done ​ on the receiver.

Once one of a receiver’s completion-signal operations has completed non-exceptionally, the
receiver contract has been satisfied.

Before 1.2.6 “Concepts ​sender ​ and ​sender_to ​,” insert a new section 1.2.x “Concept
operation_state ​” as follows:

1.2.x Concept ​operation_state

template<class O>

concept operation_state =

 destructible<O> &&

 is_object_v<O> &&

 requires (O& o) {

 {execution::start(o)} noexcept;

 };

An object whose type satisfies ​operation_state ​ represents the state of an asynchronous
operation. It is the result of calling ​execution::connect ​ with a ​sender ​ and a ​receiver ​.

execution::start ​ may be called on an ​operation_state ​ object at most once. Once
execution::start ​ has been called on it, the ​operation_state ​ must not be destroyed until
one of the receiver’s completion-signal operations has begun executing, provided that invocation
will not exit with an exception.

The start of the invocation of ​execution::start ​ shall strongly happen before
[intro.multithread] the invocation of one of the three receiver operations.

execution::start ​ may or may not block pending the successful transfer of execution to one
of the three receiver operations.

Change 1.2.6 “Concepts ​sender ​ and ​sender_to ​” as follows

XXX TODO The sender and sender_to concepts...

Let ​sender-to-impl​ be the exposition-only concept

template<class S, class R>

concept ​sender-to-impl​ =
 requires(S&& s, R&& r) {

 execution::submit((S&&) s, (R&&) r);

 };

Then,

template<class S>

concept sender =

 move_constructible<remove_cvref_t<S>> &&

 ​sender-to-impl​<S, sink_receiver>;
 ​!requires {
 ​typename sender_traits<remove_cvref_t<S>>::
 ​__unspecialized ​; // exposition only
 ​};

template<class S, class R>

concept sender_to =

 sender<S> &&

 receiver<R> &&

 ​sender-to-impl<S, R>;

 ​requires (S&& s, R&& r) {
 ​execution::connect((S&&) s, (R&&) r);
 ​};

None of these operations shall introduce data races as a result of concurrent invocations of those
functions from different threads.

An sender type's destructor shall not block pending completion of the submitted function objects.
[​Note:​ The ability to wait for completion of submitted function objects may be provided by the
associated execution context. ​--end note​]

In addition to the above requirements, types ​S ​ and ​R ​ model ​sender_to ​ only if they satisfy the
requirements from the Table below.

In the Table below,

● s ​ denotes a (possibly const) sender object of type ​S ​,
● r ​ denotes a (possibly const) receiver object of type ​R ​.

Expression Return Type Operational semantics

execution::submit(s,

r)
void If ​execution::submit(s,

r) ​ exits without throwing an
exception, then the
implementation shall invoke
exactly one of
execution::set_value(

rc, values...),

execution::set_error(

rc, error) ​ or
execution::set_done(r

c) ​ where ​rc ​ is either ​r ​ or an
object moved from ​r ​. If any of
the invocations of
set_value ​ or ​set_error
exits via an exception then it
is valid to call to either
set_done(rc) ​ or
set_error(rc, E) ​, where
E ​ is an ​exception_ptr
pointing to an unspecified
exception object.
submit ​ may or may not
block pending the successful
transfer of execution to one of
the three receiver operations.

The start of the invocation of
submit strongly happens
before [intro.multithread] the
invocation of one of the three
receiver operations.

In subsection 1.2.7 “Concept ​typed_sender ​”, change the definition of the ​typed_sender ​ concept as
follows:

template<class S>

 concept typed_sender =

 sender<S> &&

 ​has-sender-types​<sender_traits< ​remove_cvref_t< ​S ​> ​>>;

Change 1.2.8 “Concept ​scheduler ​” as follows:

XXX TODO The scheduler concept...

template<class S>

 concept scheduler =

 copy_constructible<remove_cvref_t<S>> &&

 equality_comparable<remove_cvref_t<S>> &&

 requires(E&& e) {

 execution::schedule((S&&)s);

 }; ​// && sender<invoke_result_t<execution::schedule, S>>

None of a scheduler's copy constructor, destructor ​[... as before]

[...]

execution::submit(N, r), ​execution::start(o) ​, where ​o ​ is the result of a call to
execution::connect(N, r) ​ for some receiver object ​r ​, is required to eagerly submit ​r ​ for
execution on an execution agent that ​s ​ creates for it. Let ​rc ​ be ​r ​ or an object created by copy or
move construction from ​r ​. The semantic constraints on the sender ​N ​ returned from a scheduler
s's ​schedule ​ function are as follows:

● If ​rc ​'s ​set_error ​ function is called in response to a submission error, scheduling error,
or other internal error, let ​E ​ be an expression that refers to that error if ​set_error(rc,
E) ​ is well-formed; otherwise, let ​E ​ be an ​exception_ptr ​ that refers to that error. [​Note​:
E ​ could be the result of calling ​current_exception ​ or ​make_exception_ptr ​ — ​end
note​] The scheduler calls ​set_error(rc, E) ​ on an unspecified weakly-parallel
execution agent ([​Note​: An invocation of set_error on a receiver is required to be
noexcept — ​end note​]), and

● If ​rc ​'s ​set_error ​ function is called in response to an exception that propagates out of
the invocation of ​set_value ​ on ​rc ​, let ​E ​ be
make_exception_ptr(receiver_invocation_error{}) ​ invoked from within a
catch clause that has caught the exception. The executor calls ​set_error(rc, E) ​ on
an unspecified weakly-parallel execution agent, and

● A call to ​set_done(rc) ​ is made on an unspecified weakly-parallel execution agent ([
Note​: An invocation of a receiver's set_done function is required to be noexcept — ​end
note​]).

[​Note​: The senders returned from a scheduler's ​schedule ​ function have wide discretion when
deciding which of the three receiver functions to call upon submission. — ​end note​]

Change subsection 1.2.9 Concepts “​executor ​ and ​executor_of ​” as follows to reflect the fact that the
operational semantics of ​execute ​ require a copy to be made of the invocable:

XXX TODO The ​executor ​ and ​executor_of ​ concepts...

Let ​executor-of-impl​ be the exposition-only concept

template<class E, class F>

 concept ​executor-of-impl​ =
 invocable< ​remove_cvref_t< ​F ​>& ​> &&
 ​constructible_from<remove_cvref_t<F>, F> &&
 ​move_constructible<remove_cvref_t<F>> &&
 ​copy_constructible<E> &&
 is_nothrow_copy_constructible_v<E> &&

 ​is_nothrow_destructible_v<E> &&
 equality_comparable<E> &&

 requires(const E& e, F&& f) {

 execution::execute(e, (F&&)f);

 };

Then,

template<class E>

 concept executor =

 ​executor-of-impl​<E, execution::invocable_archetype>;

template<class E, class F>

 concept executor_of =

 ​executor<E> &&
 ​executor-of-impl​<E, F>;

Remove subsection 1.2.10.1 “Class ​sink_receiver ​”.

Change subsection 1.2.10.2 “Class template ​sender_traits ​” as follows:

The class template ​sender_traits ​ can be used to query information about a sender; in
particular, what values and errors it sends through a receiver's value and error channel, and
whether or not it ever calls ​set_done ​ on a receiver.

template<class S>

 ​struct sender-traits-base {}; // exposition-only

template<class S>

 ​requires (!same_as<S, remove_cvref_t<S>>)
 ​struct sender-traits-base
 ​: sender_traits<remove_cvref_t<S>> {};

template<class S>

 ​requires same_as<S, remove_cvref_t<S>> &&
 ​sender<S> && ​has-sender-traits​<S>
 ​struct sender-traits-base<S> {
 ​template<template<class...> class Tuple,
 ​template<class...> class Variant>
 ​using value_types =
 ​typename S::template value_types<Tuple, Variant>;
 ​template<template<class...> class Variant>
 ​using error_types =
 ​typename S::template error_types<Variant>;
 ​static constexpr bool sends_done = S::sends_done;
 ​};

template<class S>

 ​struct sender_traits : sender-traits-base<S> {};

The primary ​sender_traits<S> ​ class template is defined as if inheriting from an
implementation-defined class template ​sender-traits-base<S>​ defined as follows:

● Let ​has-sender-types​ be an implementation-defined concept equivalent to:

template<template<template<class...> class,

 template<class...> class> class>

 struct ​has-value-types​; // exposition only

template<template<template<class...> class> class>

 struct ​has-error-types​; // exposition only

template<class S>

 concept ​has-sender-types​ =
 requires {

 typename

 ​has-value-types​<S::template value_types>;
 typename

 ​has-error-types​<S::template error_types>;
 typename bool_constant<S::sends_done>;

 };

If ​has-sender-types​<S> ​ is ​true ​, then ​sender-traits-base​ is equivalent to:

template<class S>

 struct ​sender-traits-base​ {
 template<template<class...> class Tuple,

 template<class...> class Variant>

 using value_types =

 typename S::template value_types<Tuple,

 Variant>;

 template<template<class...> class Variant>

 using error_types =

 typename S::template error_types<Variant>;

 static constexpr bool sends_done = S::sends_done;

 };

● Otherwise, let ​void-receiver​ be an implementation-defined class type equivalent to

struct ​void-receiver​ { // exposition only
 void set_value() noexcept;

 void set_error(exception_ptr) noexcept;

 void set_done() noexcept;

};

If ​executor_of<S, ​as-invocable​< ​void-receiver​, S>> ​ is ​true ​, then
sender-traits-base​ is equivalent to

template<class S>

 struct ​sender-traits-base​ {
 template<template<class...> class Tuple,

 template<class...> class Variant>

 using value_types = Variant<Tuple<>>;

 template<template<class...> class Variant>

 using error_types = Variant<exception_ptr>;

 static constexpr bool sends_done = true;

 };

● Otherwise, if ​derived_from<S, sender_base> ​ is ​true ​, then
sender-traits-base​ is equivalent to

template<class S>

 struct ​sender-traits-base​ {};

● Otherwise, ​sender-traits-base​ is equivalent to

template<class S>

 struct ​sender-traits-base​ {
 using __unspecialized = void; // exposition only

 };

Change 1.5.4.5 “​static_thread_pool ​ sender execution functions” as follows:

In addition to conforming to the above specification, ​static_thread_pool ​ ​executors
schedulers’ senders​ shall conform to the following specification.

class C

{

 public:

 ​template<template<class...> class Tuple,
 ​template<class...> class Variant>
 ​using value_types = Variant<Tuple<>>;
 ​template<template<class...> class Variant>
 ​using error_types = Variant<>;
 ​static constexpr bool sends_done = true;

 template< ​class Receiver ​receiver_of R ​>
 ​void ​see-below​ ​submit ​connect ​(​Receiver ​R ​&& r) const;
};

C ​ is a type satisfying the ​typed_ ​sender ​ requirements.

 template< ​class Receiver ​receiver_of R ​>
 ​void ​see-below​ ​submit ​connect ​(​Receiver ​R ​&& r) const;

Returns:​ An object whose type satisfies the ​operation_state ​ concept.

Effects​: ​Submits ​When ​execution::start ​ is called on the returned operation state,​ the
receiver ​r ​ ​is submitted​ for execution on the ​static_thread_pool ​ according to the the
properties established for ​*this ​. ​l​L​et ​e ​ be an object of type ​exception_ptr ​,​;​ then

static_thread_pool ​ will evaluate one of ​set_value(r) ​, ​set_error(r, e) ​, or
set_done(r) ​.

Appendix

Appendix A - Examples of status quo lifetime/ownership
Example 1: Delegating responsibility for allocating storage to a child sender
template ​< ​typename ​ Func, ​typename ​ Inner>
struct ​ transform_sender {
 Inner inner_;

 Func func_;

 ​template ​< ​typename ​ Receiver>
 ​struct ​ transform_receiver {
 Func func_;

 Receiver receiver_;

 ​template ​< ​typename ​... Values>
 ​void ​ set_value(Values&&... values) {
 receiver_.set_value(std::invoke(func_, (Values&&)values...));

 }

 ​template ​< ​typename ​ Error>
 ​void ​ set_error(Error&& error) {
 receiver_.set_error((Error&&)error);

 }

 ​void ​ set_done() {
 receiver_.set_done();

 }

 };

 ​template ​< ​typename ​ Receiver>
 ​void ​ submit(Receiver r) {
 // Here we delegate responsibility for storing the receiver, 'r'

 // and a copy of 'func_' to the implementation of inner_.submit() which

 // is required to store the transform_receiver we pass to it.

 inner_.submit(transform_receiver<Receiver>{func_, std::move(r)});

 }

};

Example 2: A simple execution context that shows the allocation necessary for operation-state for the
'schedule()' operation.
class ​ simple_execution_context {
 ​struct ​ task_base {
 ​virtual void ​ execute() ​noexcept ​ = 0;
 task_base* next;

 };

 ​class ​ schedule_sender {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ schedule_sender(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 ​template ​<std::receiver_of Receiver>
 ​void ​ submit(Receiver&& r) {
 ​class ​ task ​final ​ : ​private ​ task_base {
 std::remove_cvref_t<Receiver> r;

 ​public ​:
 explicit task(Receiver&& r) : r((Receiver&&)r) {}

 ​void ​ execute() ​noexcept ​ ​override ​ {
 ​try ​ {
 std::execution::set_value(std::move(r));

 } ​catch ​ (...) {
 std::execution::set_error(std::move(r), std::current_exception());

 }

 ​delete this ​;
 }

 };

 // Allocate the "operation-state" needed to hold the receiver

 // and other state (like storage of 'next' field of intrusive list,

 // vtable-ptr for dispatching type-erased implementation)

 task* t = ​new ​ task{static_cast<Receiver&&>(r));

 ​// Enqueue this task to the executor's linked-list of tasks to execute.
 ctx.enqueue(t);

 }

 };

 ​class ​ scheduler {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ scheduler(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 schedule_sender schedule() ​const ​ ​noexcept ​ { return schedule_sender{ctx}; }
 };

public:

 scheduler get_scheduler() ​noexcept ​ { return scheduler{* ​this ​}; }

 ​// Processes all pending tasks until the queue is empty.
 ​void ​ drain() ​noexcept ​ {
 while (head != nullptr) {

 task_base* t = std::exchange(head, head->next);

 t->execute();

 }

 }

private:

 ​void ​ enqueue(task_base* t) ​noexcept ​ {
 t->next = std::exchange(head, t);

 }

 task_base* head = ​nullptr ​;
};

Example 3: The same simple_execution_context as above but this time with the schedule() operation
implemented using coroutines and awaitables. Note that it does not require any heap allocations.
class ​ simple_execution_context {
 ​class ​ awaiter {
 ​friend ​ simple_execution_context;

 simple_execution_context& ctx;

 awaiter* next = ​nullptr ​;
 std::coroutine_handle<> continuation;

 ​public ​:
 ​explicit ​ awaiter(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 ​bool ​ await_ready() ​const noexcept ​ { ​return false ​; }

 ​void ​ await_suspend(std::continuation_handle<> h) ​noexcept ​ {
 continuation = h;

 ctx.enqueue(this);

 }

 ​void ​ await_resume() ​noexcept ​ {}
 };

 ​class ​ schedule_awaitable {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ schedule_awaitable(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 // Return an instance of the operation-state from 'operator co_await()'

 // This is will be placed as a local variable within the awaiting coroutine's

 // coroutine-frame and means that we don't need a separate heap-allocation.

 awaiter ​operator co_await ​() ​const noexcept ​ {
 ​return ​ awaiter{ctx};
 }

 };

 ​class ​ scheduler {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ scheduler(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 schedule_awaitable schedule() ​const noexcept ​ { ​return ​ schedule_awaitable{ctx}; }
 };

public ​:
 scheduler get_scheduler() ​noexcept ​ { ​return ​ scheduler{*this}; }

 ​// Processes all pending awaiters until the queue is empty.
 ​void ​ drain() ​noexcept ​ {
 ​while ​ (head != ​nullptr ​) {
 awaiter* a = std::exchange(head, head->next);

 a->execute();

 }

 }

private ​:
 ​void ​ enqueue(awaiter* a) ​noexcept ​ {
 a->next = std::exchange(head, a);

 }

 awaiter* head = ​nullptr ​;
};

Example 4: The same simple_execution_context but this time implemented using the connect/start
refinements to the sender/receiver proposed by this paper. This uses similar techniques to the coroutine
version above. ie. returning the operation-state to the caller and relying on them to keep the
operation-state alive until the operation completes.

class ​ simple_execution_context {
 ​struct ​ task_base {
 ​virtual void ​ execute() ​noexcept ​ = 0;
 task_base* next;

 };

 ​class ​ schedule_sender {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ schedule_sender(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 ​template ​<typename Receiver>
 ​class ​ operation_state ​final ​ : ​private ​ task_base {
 simple_execution_context& ctx;

 std::remove_cvref_t<Receiver> receiver;

 ​void ​ execute() ​noexcept ​ ​override ​ {
 ​try ​ {
 std::execution::set_value(std::move(receiver));

 } ​catch ​ (...) {
 std::execution::set_error(std::move(receiver), std::current_exception());

 }

 }

 ​public ​:

 ​explicit ​ operation_state(simple_execution_context& ctx, Receiver&& r)
 : ctx(ctx), receiver((Receiver&&)r) {}

 ​void ​ start() ​noexcept ​ & {
 ctx.enqueue(this);

 }

 };

 // Returns the operation-state object to the caller which is responsible for

 // ensuring it remains alive until the operation completes once start() is called.

 ​template ​<std::receiver_of Receiver>
 operation_state<Receiver> connect(Receiver&& r) {

 ​return ​ operation_state<Receiver>{* ​this ​, (Receiver&&)r};
 }

 };

 ​class ​ scheduler {
 simple_execution_context& ctx;

 ​public ​:
 ​explicit ​ scheduler(simple_execution_context& ctx) ​noexcept ​ : ctx(ctx) {}

 schedule_sender schedule() const ​noexcept ​ { ​return ​ schedule_sender{ctx}; }
 };

public:

 scheduler get_scheduler() ​noexcept ​ { ​return ​ scheduler{* ​this ​}; }

 // Processes all pending tasks until the queue is empty.

 ​void ​ drain() ​noexcept ​ {
 ​while ​ (head != ​nullptr ​) {
 task_base* t = std::exchange(head, head->next);

 t->execute();

 }

 }

private:

 ​void ​ enqueue(task_base* t) ​noexcept ​ {
 t->next = std::exchange(head, t);

 }

 task_base* head = ​nullptr ​;
};

Appendix B - Exception-safe sender adapters
Example 1: A sender-adapter that executes two other senders sequentially. This is difficult to get right
because of the potential for the submit() method to throw.
This code snippet shows the problem with a naive approach.
template ​< ​typename ​ First, ​typename ​ Second>
class ​ sequence_sender {
 First first;

 Second second;

 ​template ​< ​typename ​ Receiver>
 ​class ​ first_receiver {
 Second second;

 Receiver receiever;

 ​public ​:
 ​explicit ​ first_receiver(Second&& second, Receiver&& recevier)
 ​noexcept ​(std::is_nothrow_move_constructible_v<Second> &&
 std::is_nothrow_move_constructible_v<Receiver>)

 : second((Second&&)second), receiver((Receiver&&)receiver) {}

 ​void ​ set_value() && ​noexcept ​ {
 ​try ​ {
 execution::submit(std::move(second), std::move(receiver));

 } ​catch ​ (...) {
 // BUG: What do we do here?

 //

 // We need to signal completion using 'receiver' but now

 // 'receiver' might be in a moved-from state and so we

 // cannot safely invoke set_error(receiver, err) here.

 }

 }

 ​template ​< ​typename ​ Error>
 ​void ​ set_error(Error&& e) && ​noexcept ​ {
 execution::set_error(std::move(receiver), (E&&)e);

 }

 ​void ​ set_done() && ​noexcept ​ {
 execution::set_done(std::move(receiver));

 }

 };

public ​:
 ​explicit ​ sequence_sender(First first, Second second)
 ​noexcept ​(std::is_nothrow_move_constructible_v<First> &&
 std::is_nothrow_move_constructible_v<Second>)

 : first((First&&)first), second((Second&&)second)

 {}

 ​template ​< ​typename ​ Receiver>
 ​void ​ submit(Receiver receiver) && {
 // If this call to submit() on the first sender throws then

 // we let the exception propagate out without calling the

 // 'receiver'.

 execution::submit(

 std::move(first),

 first_receiver<Receiver>{std::move(second), std::move(receiver)});

 }

};

Example 2: This shows a more correct implementation that makes use of shared_ptr to allow recovery in
the case that the submit() on the second sender throws. We pass a copy of the shared_ptr into submit()
and also retain a copy that we can use in case submit() throws an exception.
template ​< ​typename ​ Receiver>
class ​ shared_receiver {
 std::shared_ptr<Receiver> receiver_;

public ​:
 ​explicit ​ shared_receiver(Receiver&& r)
 : receiver_(std::make_shared<Receiver>((Receiver&&)r))

 {}

 ​template ​< ​typename ​... Values>
 ​requires ​ value_receiver<Receiver, Values...>
 ​void ​ set_value(Values&&... values) && ​noexcept ​(
 is_nothrow_invocable_v<decltype(execution::set_value), Receiver, Values...>) {

 execution::set_value(std::move(*receiver_), (Values&&)values...);

 }

 ​template ​< ​typename ​ Error>
 ​requires ​ error_receiver<Receiver, Error>
 ​void ​ set_error(Error&& error) && ​noexcept ​ {
 exection::set_error(std::move(*receiver_), (Error&&)error);

 }

 ​void ​ set_done() && ​noexcept ​ ​requires ​ done_receiver<Receiver> {
 execution::set_done(std::move(*receiver_));

 }

};

template ​< ​typename ​ First, ​typename ​ Second>
class ​ sequence_sender {
 First first;

 Second second;

 ​template ​< ​typename ​ Receiver>
 ​class ​ first_receiver {
 Second second;

 shared_receiver<Receiver> receiver;

 ​public ​:
 ​explicit ​ first_receiver(Second&& second, Receiver&& recevier)
 ​noexcept ​(std::is_nothrow_move_constructible_v<Second> &&
 std::is_nothrow_move_constructible_v<Receiver>)

 : second((Second&&)second), receiver((Receiver&&)receiver) {}

 ​void ​ set_value() && ​noexcept ​ {
 ​try ​ {
 execution::submit(std::move(second), std::as_const(receiver));

 } ​catch ​ (...) {
 // We only copied the receiver into submit() so we still have access

 // to the original receiver to deliver the error.

 //

 // Note that we must assume that if submit() throws then it will not

 // have already called any of the completion methods on the receiver.

 execution::set_error(std::move(receiver), std::current_exception());

 }

 }

 ​template ​< ​typename ​ Error>
 ​void ​ set_error(Error&& e) && ​noexcept ​ {
 execution::set_error(std::move(receiver), (E&&)e);

 }

 ​void ​ set_done() && ​noexcept ​ {
 execution::set_done(std::move(receiver));

 }

 };

public ​:
 ​explicit ​ sequence_sender(First first, Second second)
 ​noexcept ​(std::is_nothrow_move_constructible_v<First> &&
 std::is_nothrow_move_constructible_v<Second>)

 : first((First&&)first), second((Second&&)second)

 {}

 ​template ​< ​typename ​ Receiver>
 ​requires ​ std::execution::sender_to<Second, shared_receiver<Receiver>>
 ​void ​ submit(Receiver receiver) && {
 // If this call to submit() on the first sender throws then

 // we let the exception propagate out without calling the

 // 'receiver'.

 execution::submit(

 std::move(first),

 first_receiver<Receiver>{std::move(second), std::move(receiver)});

 }

};

Example 3: Implementation of the sequence() algorithm using connect()/start()-based senders. Notice
that this implementation does not require any heap-allocations to implement correctly.
// Helper that allows in-place construction of std::variant element

// using the result of a call to a lambda/function. Relies on C++17

// guaranteed copy-elision when returning a prvalue.

template ​<std::invocable Func>
struct ​ __implicit_convert {
 Func func;

 ​operator ​ std::invoke_result_t<Func>() && noexcept(std::is_nothrow_invocable_v<Func>) {
 return std::invoke((Func&&)func);

 }

};

template ​<std::invocable Func>
__implicit_convert(Func) -> __implicit_convert<Func>;

template ​< ​typename ​ First, ​typename ​ Second>
class ​ sequence_sender {
 ​template ​< ​typename ​ Receiver>
 ​class ​ operation_state {
 ​class ​ second_receiver {
 operation_state* state_;

 ​public ​:
 ​explicit ​ second_receiver(operation_state* state) ​noexcept ​ : state_(state) {}

 ​template ​< ​typename ​... Values>
 ​requires ​ std::execution::receiver_of<Receiver, Values...>
 ​void ​ set_value(Values&&... values) ​noexcept ​(std::is_nothrow_invocable_v<
 ​decltype ​(std::execution::set_value), Receiver, Values...>) {
 std::execution::set_value(std::move(state_->receiver_), (Values&&)values...);

 }

 ​template ​< ​typename ​ Error>
 ​requires ​ std::execution::receiver<Receiver, Error>

 ​void ​ set_error(Error&& error) ​noexcept ​ {
 std::execution::set_error(std::move(state_->receiver_), (Error&&)error);

 }

 ​void ​ set_done() ​noexcept ​ {
 std::execution::set_done(std::move(state_->receiver_));

 }

 };

 ​class ​ first_receiver {
 operation_state* state_;

 ​public ​:
 ​explicit ​ first_receiver(operation_state* state) ​noexcept ​ : state_(state) {}

 ​void ​ set_value() ​noexcept ​ {
 ​auto ​* state = state_;
 ​try ​ {
 ​auto ​& secondState = state->secondOp_. ​template ​ emplace<1>(
 __implicit_convert{[state] {

 ​return ​ std::execution::connect(std::move(state->secondSender_),
 first_receiver{state});

 }});

 std::execution::start(secondState);

 } ​catch ​ (...) {
 std::execution::set_error(std::move(state->receiver_), std::current_exception());

 }

 }

 ​template ​< ​typename ​ Error>
 ​requires ​ std::execution::receiver<Receiver, Error>
 ​void ​ set_error(Error&& error) ​noexcept ​ {
 std::execution::set_error(std::move(state_->receiver_), (Error&&)error);

 }

 ​void ​ set_done() ​noexcept ​ {
 std::execution::set_done(std::move(state_->receiver_));

 }

 };

 ​explicit ​ operation_state(First&& first, Second&& second, Receiver receiver)
 : secondSender_((Second&&)second)

 , receiver_((Receiver&&)receiver)

 , state_(std::in_place_index<0>, __implicit_convert{[​this ​, &first] {
 ​return ​ std::execution::connect(std::move(first),
 first_receiver{ ​this ​});
 }})

 {}

 ​void ​ start() & ​noexcept ​ {
 std::execution::start(std::get<0>(state_));

 }

 ​private ​:
 Second secondSender_;

 Receiver receiver_;

 // This operation-state contains storage for the child operation-states of

 // the 'first' and 'second' senders. Only one of these is active at a time

 // so we use a variant to allow the second sender to reuse storage from the

 // first sender's operation-state.

 std::variant<std::execution::connect_result_t<First, first_receiver>,

 std::execution::connect_result_t<Second, second_receiver>> state_;

 };

public ​:

 ​explicit ​ sequence_sender(First first, Second second)
 : firstSender_((First&&)first)

 , secondSender_((Second&&)second)

 {}

 ​template ​< ​typename ​ Receiver>

 operation_state<std::remove_cvref_t<Receiver>> connect(Receiver&& r) && {

 ​return ​ operation_state<std::remove_cvref_t<Receiver>>{
 std::move(first_), std::move(second_), (Receiver&&)r};

 }

private ​:
 First firstSender_;

 Second secondSender_;

};

