Rangified version of lexicographical compare three way
Document #: P2022R3

Date: 2023-12-13

Project: Programming Language C++

Audience: SG9, LEWG

Reply-to:

Alex Dathskovsky <calebxyz@gmail.com>

Ran Regev <ran.regev(@beyeonics.com>

Revision History

R3

Moved the concept same_as_any_of tO [concept.same as any of]
Revisit the the Range Interface

R2

e Fixed wording per mailing list comments

R1

Added link to github implementation
Added code example

RO

e initial work

Motivation and Scope

This document adds the wording for ranges::lexicographical compare three way.

Design Decisions

o We explored the following directions and decided to drop them:
o Having restrictions on the relation between the ranges. We found it unnecessary as
the comp predicate glues the ranges together for the needs of this comparison.

mailto:calebxyz@gmail.com
mailto:ran.regev@beyeonics.com

o Returning not only the comparison result but also the iterators to the ranges where
the decision was made (returning a result-struct). One can use
std::ranges::mismatch [alg.mismatch] for this purpose.

e The chosen direction is as follows:

o Follow the way std: :lexicographical compare three wayis
declared.

o The Comp function is restricted to return one of the comparison categories, and
nothing else. Therefore

m There is no reason to restrict the relation between the compared ranges in
any way.

m Functions built on top of
ranges::lexicographical compare three way may restrict
their input parameters if required.

m Functions built on top of
ranges::lexicographical compare three way, maybe
ranges::sort three way () or alike may stand to leverage the
comprehensive information embedded within the return value of
ranges::lexicographical compare three way. This
enriched data can be harnessed to communicate specific outcomes to
users. For example, sort three way () could relay details such as the
resultant sorted range being ordered from the smallest to the largest (or
vice versa), indicating uniformity among all elements, or signaling an
unsortable state within the given range. By tapping into this returned
information, these functions can provide users with clear and detailed
insights into the operation's conclusion.

Code Example

In [GitHub] branch P2022/master one can build and run [Tests] to experiment with the function

Proposed Wording

Add to [concepts.syn]

template<class T, class U>
concept same as any of = see below;

Add to [concept.same_as_any_of]

template<
typename T,
typename... Us
>

concept same as any of = (same as<T, Us> or ..

.); // exposition-only

Add to [algorithm.syn]

namespace std::ranges {
template<
input iterator I1,
input iterator I2,
class Comp,
class Projl,
class Proj2
>
using three-way-order =
invoke result t<
Comp,
typename projected<Il, Projl>::value type,
typename projected<I2, Proj2>::value type
>; // exposition-only

template<
std::input iterator Il1,
std::input iterator I2,
class Comp,
class Projl,
class Proj2
>
constexpr bool is-three-way-ordering =
std::same _as any of<
three-way-order<Il, I2, Comp, Projl, Proj2>,
std::strong ordering,
std::weak ordering,
std::partial ordering
>; // exposition-only

template<
input iterator Il, sentinel for<Il> S1,
input iterator I2, sentinel for<I2> S2,
class Comp = std::compare three way,
class Projl identity,
class Proj2 = identity

>
requires
is-three-way-ordering<Il, I2, Comp, Projl, Proj2>
constexpr auto
lexicographical compare three way (
I1 firstl,
S1 lastl,
I2 first2,
52 last2,
Comp comp = {},
Projl projl = {},
Proj2 proj2 {}
) —-> common comparison category t<
decltype (comp (projl (*firstl), proj2(*first2))),
strong ordering

template<
input range R1,
input range R2,
class Comp = compare three way,
class Projl = identity,
class Proj2 = identity

>

requires
is-three-way-ordering<iterator t<R1>,

constexpr auto

ranges: :lexicographical compare three way (
R1&& rl,
R2&& r2,
Comp comp =
Projl projl =

{1,

{1,

Proj2 proj2 = {}

) —-> common_ comparison category t<

decltype (comp (projl (*ranges: :begin(rl)),

strong ordering
>;

Add to [alg.three.way]

template<class InputlIteratorl,

constexpr auto
lexicographical compare three way(

bl,

el,

b2,

e?

InputIteratorl

InputIteratorl

InputIterator?2

InputIterator?2
)

using three-way-order =
invoke result t<
Comp,
class projected<Il,
class projected<I2,
>; // exposition-only

template<
input iterator Il,
sentinel for S1,
input iterator I2,
sentinel for s2,

class Comp = std::compare three way,
class Projl = identity,
class Proj2 = identity

>
constexpr bool is-three-way-ordering =
same—-as—any-of<

lexicographical-compare-three-way-result-t<Il,

std::strong ordering,
std::weak ordering,

iterator t<R2>, Comp, Projl, Proj2>

proj2 (*ranges::begin(r2)))),

class Inputlterator2>

Projl>::value type,
Proj2>::value type

I2, Comp, Projl, Proj2>,

std::partial ordering
>; //exposition-only

template<
input iterator I1,
sentinel for s1,
input iterator IZ2,
sentinel for S2,
class Comp = compare three way,
class Projl = identity,
class Proj2 = identity

>

requires
is-three-way-ordering<Il, I2, Comp, Projl, Proj2>

constexpr auto

ranges: :lexicographical compare three way (
I1 firstl,

Sl lastl,

I2 first2,

S2 last2,

Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}

) —-> common_comparison category t<
decltype (comp (projl (*firstl), proj2(*first2))),
std::strong ordering
>;

template<
input range R1,
input range R2,
class Comp = compare three way,
class Projl = identity,
class Proj2 = identity
>
requires
is-three-way-ordering<iterator t<R1>, iterator t<R2>, Comp, Projl,
constexpr auto
ranges: :lexicographical compare three way (
R1&& rl,
R2&& r2,
Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}
) —-> common_ comparison category t<

Proj2>

decltype (comp (projl (*ranges::begin(rl)), proj2(*ranges::begin(r2)))),

strong ordering
>

[1] Let N be the minimum integer between distance (firstl, sl) and
distance (first2,s2).Let E(n) be comp (projl ((firstl + n)),
proj2 ((first2 + n))).

[2] — Returns: E(1), where 1 is the smallest integer in [0, N) such that E(i) != 0 is true, or
distance (firstl,sl) <=> distance(first2, s2) ifno such integer exists.
[3] — Complexity: At most N applications of comp, proj1, proj2.

Acknowledgements

Lee-or Saar <Leeor.Saar(@beyeonics.com>

Mor Elmaliach <Mor.Elmaliach@beyeonics.com>
Yaron Meister <Yaron.Meister@beyeonics.com>
Ronen Friedman <friedman.ronen@gmail.com>

References

[GitHub] implementation. https://github.com/regevran/I1PapersFork/tree/P2022/master
[Tests] tests. https://github.com/regevran/I1PapersFork/tree/P2022/master/P2022/tests

mailto:Yaron.Meister@beyeonics.com
mailto:friedman.ronen@gmail.com

