
History of Executor
Properties
Jared Hoberock (jhoberock@nvidia.com)
2020-01-13
P2033

Goals

Describe the history of P0443 as it relates to executor properties

Provide rationale for the design of P1393’s general purpose properties system

Prehistoric Executors

N3378 - A preliminary proposal for work executors (Google), February 2012

N4046 - Executors and Asynchronous Operations (Kohlhoff), May 2014

N4406 - An Interface for Abstracting Execution (Nvidia), April 2015

Focused on different use cases

Google Proposal

Executors derive from abstract
base class

Type erasure

Methods possibly block

Separate methods for timed
execution

thread_pool is-an executor

class executor
{
public:
 virtual void add(function<void()> closure) = 0;

 virtual void add_at(time_point abs_time,
 function<void()> closure) = 0;

 virtual void add_after(duration rel_time,
 function<void()> closure) = 0;

 ...
};

class thread_pool : public executor { ... };

Kohlhoff Proposal

Three fundamental operations

Differ in how they are allowed to
block the caller

Distinction between executors
and execution contexts

class my_executor
{
public:
 template<class Function, class Allocator>
 void dispatch(Function&& f, const Allocator& alloc);

 template<class Function, class Allocator>
 void post(Function&& f, const Allocator& alloc);

 template<class Function, class Allocator>
 void defer(Function&& f, const Allocator& alloc);

 execution_context& context() noexcept;

 ...
};

Nvidia Proposal

Emphasized bulk execution

executor_traits-based
adaptation

Provided channels to results

Distinguished between async
and blocking ops

template<class Executor>
struct executor_traits
{
 template<class Function>
 static future<auto> async_execute(Executor& ex,
 Function f);
 template<class Function>
 static future<auto> async_execute(Executor& ex,
 Function f,
 shape_type shape);

 template<class Function>
 static auto execute(Executor& ex,
 Function f);
 template<class Function>
 static auto execute(Executor& ex,
 Function f,
 shape_type shape);

 ...
};

“Unify, please.”
SG1, Kona, October 2015

Unification

Began regular teleconferences

Year of discussion

Identified additional use cases

Sent proposal to Issaquah, November 2016

P0443R0 - A Unified Executors Proposal
Defined seven executor “categories”
● OneWayExecutor

● HostBasedOneWayExecutor

● NonBlockingOneWayExecutor

● ...

Fifteen execution functions exposed as Niebler-style customization points

Customization points adapt when native functionality is missing

Mandatory exposure of execution contexts via .context()

Execution Functions

Name encodes characteristics
● Blocking
● Directionality
● Cardinality

Blocking Directionality Cardinality

execute possibly one-way single

async_defer never two-way single

bulk_sync_execute always two-way bulk

...

Cross-Cutting Concerns in P0443R0

● Invariants preserved by
adaptations applied by
customization points

● Exposed via type traits

● Enables compile-time
decisions

Type Traits
● blocking behavior
● execution agent mapping
● execution function detection
● bulk execution semantics
● associated types

○ context
○ future
○ index
○ shape

Kitchen Sink
OneWay HostBasedOneWay NonBlockingOneWay TwoWay NonBlockingTwoWay BulkOneWay BulkTwoWay

.execute(f) -> void

.execute(f,alloc) -> void

.post(f) -> void

.post(f,alloc) -> void

.defer(f) -> void

.defer(f,alloc) -> void

.async_post(f) -> future

.async_defer(f) -> future

.sync_execute(f) -> result

.async_execute(f) -> future

.then_execute(f,fut) -> future

.bulk_execute(f,n,sf) -> void

.bulk_sync_execute(f,n,rf,sf) -> result

.bulk_async_execute(f,n,rf,sf) -> future

.bulk_then_execute(f,n,fut,rf,sf) -> future

Revised Kitchen Sink
OneWay NonBlockingOneWay TwoWay BulkTwoWay

.execute(f) -> void

.post(f) -> void

.defer(f) -> void

.async_post(f) -> future

.async_defer(f) -> future

.sync_execute(f) -> result

.async_execute(f) -> future

.then_execute(f,fut) -> future

.bulk_execute(f,n,sf) -> void

.bulk_sync_execute(f,n,sf) -> result

.bulk_async_execute(f,n,sf) -> future

.bulk_then_execute(f,n,fut,rf,sf) -> future

.bulk_post(f,n,sf) -> void

.bulk_defer(f,n,sf) -> void

.bulk_async_post(f,n,sf) -> future

.bulk_async_defer(f,n,sf) -> future

Adaptations Visualized

“This picture looks terrifying.”
SG1, Kona, February 2017

These functions simply create
execution

So where is the complexity
coming from?

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Optional allocator argument

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Blocking guarantee

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Prefer continuation

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

One-way

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Two-way

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Single

Factors of Complexity
execute

post

defer

async_post

async_defer

sync_execute

async_execute

then_execute

bulk_execute

bulk_sync_execute

bulk_async_execute

bulk_then_execute

bulk_post

bulk_defer

bulk_async_post

bulk_async_defer

Bulk

Cross Product
Factors multiply combinatorially

Envisioned extensions aren’t yet represented

● Delayed execution
● Prioritized execution
● ...

Separate execution functions for each combination will not scale

Need to communicate ancillary execution properties separately from functions

Factored Representation

P0688 proposed refactoring based on
properties

See 5/16/17 sg1-exec thread “Executor simplification proposal”

https://groups.google.com/d/msg/sg1-exec/bN62Pz0OtKY/UJspp7F6BAAJ

P0443R2: Factored Representation

execute

bulk_execute

twoway_execute

then_execute

bulk_twoway_execute

bulk_then_execute

never_blocking

always_blocking

possibly_blocking

continuation

not_continuation

...

Functions Properties

Result of Property-Based Factorization

execute(ex, f)

bulk_execute(ex, f, s, sf)

sync_execute(ex, f)

defer(ex, f)

...

require(ex, single, oneway).execute(f)

require(ex, bulk, oneway).bulk_execute(f, s, sf)

require(ex, single, twoway, always_blocking).twoway_execute(f)

prefer(require(ex, single, oneway), continuation).execute(f)

...

16 Customization Point Objs 2 Customization Point Objs + 6 Member Functions + Many Properties

Before After

“P0443 is our preferred direction
for executors.”
SG1, Albuquerque, November 2017

P0443RX Follow-Ups
Introduced query()

Polished ergonomics

Clarified semantics

Introduced additional properties

Reduced scope to one-way in anticipation of Senders

Polymorphic executors were an important consideration for many design
choices

Additional Use Cases for Properties

Associated executors for various types

● Execution contexts
● Execution policies
● Tasks

“Arbitrary knobs” for execution policies

Array access behaviors

Allocator locality

See David’s Kona presentation on
P1393

Summary

P0443 is committed to supporting a diversity of use cases efficiently

Extensions to executors need to scale

Separating cross-cutting concerns from execution functions seems scalable

Reifying cross-cutting concerns as properties has been a productive organizing
principle

