
Paper Number: P2075R2

Title: Philox as an extension of the C++ RNG engines

Authors: Pavel Dyakov <pavel.dyakov@intel.com>

Ilya Burylov <burylov@gmail.com>

Ruslan Arutyunyan <ruslan.arutyunyan@intel.com>

Andrey Nikolaev <af.nikolaev@gmail.com>

Alina Elizarova <alina.elizarova@intel.com>

Contributors: John Salmon

Audience: SG6 (Numerics), LEWG

Date: 2023-01-12

1. Introduction
C++11 introduced a comprehensive mechanism to manage the generation of random numbers in the

<random> header file (including distributions, pseudo random and non-deterministic engines).

We proposed a set of engine candidates for the C++ standard extension in the P1932R0 paper [1]. This

paper is focused on the family of the counter-based Philox engines.

We propose 2 possible API approaches and seek feedback from the committee on which path is

preferable.

2. Revision History
Key changes compared with R1 (reviewed at telecon 2022-05-22 in SG6):

● Wording for the Philox-focused API was simplified.

● Wording for the counter_based_engine based API was extended.

● Design considerations section was added.

● set_counter() member function was added to the engine.

● c template parameter was removed for the sake of ease of use.

Key changes compared with R0 (reviewed in Prague in SG6):

● Aligned wording for philox_engine with the C++ standard.

● Added an alternative API with a std::array template parameter. Removed alternative APIs with

calculated constant values.

● Added an alternative approach with a generic counter_based_engine and a specific philox_prf

pseudo-random function.

3. Motivation
Random number generators (engines) are at the heart of Monte Carlo simulations used in many

applications such as physics simulations, finance, statistical sampling, cryptography, noise generation and

others.

Each of the C++11 random number generators has own advantages and disadvantages, e.g. linear

congruential generators, the simplest generators with 32-bit state, has a quite short generation period

(2^32) and weak statistical properties, while Mersenne Twister 19937 generator has long generation

period and strong statistical properties, but has a large vector state that affects efficiency of parallelism

in Monte Carlo simulations.

mailto:pavel.dyakov@intel.com
mailto:burylov@gmail.com
mailto:ruslan.arutyunyan@intel.com
mailto:af.nikolaev@gmail.com
mailto:alina.elizarova@intel.com

Several new algorithms were introduced in the last decade, which can utilize modern hardware

parallelism and provide solid statistical properties.

4. General Description
Philox is one of the counter-based engines introduced in 2011 in [2]. All counter-based engines have a

small state (e.g., Philox4x32 has 10 x 32-bit elements in its state) and a long period (e.g., the period of

Philox4x32 is 2130). Counter-based engines effectively support parallel simulations via both block-splitting

and independent-stream techniques and many of them (including Philox) are well-suited to a wide

variety of hardware including CPU/GPU/FPGA/etc.

Philox is proposed as the first new engine since C++11 for standardization. It satisfies the following

criteria, as discussed in P1932R0 [1]):

● Statistical properties. The original paper asserted that the Philox family passes rigorous

statistical tests including hundreds of different invocations of TestU01’s BigCrush [2]. This

statement has been independently confirmed: the TestU01 batteries for Philox4x32-10 and

Philox4x32-7 were tested in [4] and DieHard testing results for Philox4x32-10 were published in

the Intel® Math Kernel Library (Intel® MKL) documentation [5].

● Wide usage. Philox is broadly used in Monte-Carlo simulations which require massively parallel

random number generation, e.g., financial simulations [6], simulation of non-deterministic finite

automata [7], etc.

● HW friendliness. Philox’s distinguishing features are its small state and reliance on simple

primitive operations. It is, therefore, easy to vectorize and parallelize. On a CPU, for example,

Intel® MKL provides a highly vectorized version of Philox4x32-10. Philox is also proven to work

on GPUs – it’s implemented in the GPU-optimized Nvidia and AMD libraries: cuRAND and

rocRAND.

5. High-level API Design
Two approaches to an API definition are considered:

1. A philox-focused API defines a self-contained engine class template analogous to the other

random number engines in the standard. (This is an evolution of the R0 version of this paper).

2. A counter-based-engine API, which is more generic and allows the creation of engines based on

other pseudo-random functions as well.

Currently authors support the 1-st approach for its simplicity and consistency with existing engines. But

the 2-nd approach has its own sense, especially if the family of counter-based engines is extended in the

future versions of the standard.

New engine introduces a dedicated function .set_counter() to set the state to arbitrary position, which

enables support of parallel simulations and is a trivial operation for all counter based engines. Its use

cases are described in the Design considerations section.

6. Philox-Focused API and Wording
This section describes the 1st of two approaches.

This API specifies a single, new philox_engine class template.

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r, UIntType ...consts>
class philox_engine;

The philox_engine is described in terms of the Philox function which acts as a keyed bijection on a

domain of size 2W*N. Consequently, the philoxNxW engines have a period of N*2W*N.

https://arxiv.org/pdf/1408.5526.pdf

Pre-defined aliases are provided for instantiations with constants and parameters that are known to

produce high-quality random numbers.

The philoxNxW_r<r> permits the program to trade speed for safety by specifying a number of rounds of

mixing. Philox generators with r=7 have no known statistical flaws [2].

template<std::size_t r>
using philox4x32_r<r> = …;

template<std::size_t r>
using philox4x64_r<r> = …;

The philoxNxW aliases have a pre-defined round-count, r=10, that is somewhat larger than the minimum

required to pass known statistical tests. In other words, they provide a statistical safety margin at a

modest performance cost.

using philox4x32 = philox4x32_r<10>;
using philox4x64 = philox4x64_r<10>;

Wording
The changes affect only section “26.6 Random number generation”.

● Changes in section 26.6 Random number generation

…

(5.3) – the operator mullo denotes the low half of the modular multiplication of a and b: 𝑎 * 𝑏()𝑚𝑜𝑑 2𝑤

(5.4) – the operator mulhi denotes the high half of the multiplication of a and b: ()⌊ 𝑎 * 𝑏()/2𝑤⌋

● Changes in sub-section 26.6.1 Header <random> synopsis

…

// 26.6.3.4 class template philox_engine

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r,
UIntType ...consts>

class philox_engine;

…

// 26.6.5 engines and engine adaptors with predefined parameters.

…

template<std::size_t r>
using philox4x32_r<r> = see below;

template<std::size_t r>
using philox4x64_r<r> = see below;

using philox4x32 = philox4x32_r<10>;

using philox4x64 = philox4x64_r<10>;

…

● New sub-section “26.6.3.4 Class template philox_engine”

26.6.3.4 Class template philox_engine

1 A philox_engine random number engine produces unsigned integer random numbers in the

closed interval , where the template parameter w defines the range of the produced0, 2𝑤 − 1[]

numbers. The state of a philox_engine object is of size (5n/2+1) and consists of a sequence X𝑥
𝑖

of n result_types, a sequence K of n/2 result_types, a sequence Y of n result_types, and a scalar,

I, the index of the next value to be returned by the GA from Y.

2 The generation algorithm GA(xi) returns YI, the value stored in the Ith element of Y, in state xi+1,

i.e., after applying the transition algorithm: xi+1 = TA(xi).

3 The state transition algorithm, TA, is performed as follows:

I=I+1
if(I == n){

Y = Philox(K, X) // see below
X = (X+1) // as if X is an n*w-bit integer
I = 0

}

4 The Philox function maps the n/2-length sequence K and the n-length sequence X into an

n-length output sequence. Philox applies an R-round substitution-permutation network to the

values in X. A single round of the generation algorithm performs the following steps:

(4.1) – The output sequence X’ of the previous round (X in case of the first round) is permuted to

obtain the intermediate state V:

𝑉
𝑗

= 𝑋'
𝑓 𝑗()

where = and is defined in Table 1 below, as in [2, 9]: 𝑗 0, …, 𝑛 − 1 𝑓(𝑗)

Table 1. Values for the word permutation f(j)

j=
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n
=

2 0 1
4 0 3 2 1
8 2 1 4 7 6 5 0 3
16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

[Note: for n=2 the sequence is not permuted]

(4.2) – The following computations are applied for the elements of the V sequence:

𝑋
2*𝑘
' = 𝑚𝑢𝑙𝑙𝑜(𝑉

2*𝑘+1
, 𝑀

𝑘
)

𝑋
2*𝑘+1
' = 𝑚𝑢𝑙ℎ𝑖 𝑉

2*𝑘+1
, 𝑀

𝑘() 𝑥𝑜𝑟 𝑘𝑒𝑦
𝑘
𝑞 𝑥𝑜𝑟 𝑉

2*𝑘

where: k = 0 … n/2-1, q is the index of the round: q = , is the kth round key for0…𝑟 − 1 𝑘𝑒𝑦
𝑘
𝑞

round q, ,and Mk and Ck are constants (template parameters).𝑘𝑒𝑦
𝑘
𝑞 = 𝐾

𝑘
+ 𝑞 * 𝐶

𝑘() 𝑚𝑜𝑑 2𝑤

5 After r applications of the single-round function, Philox returns the value of X’.

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r,
UIntType ...consts>

class philox_engine {
// Exposition only
static constexpr std::size_t array_size = n / 2;

public:

// types
using result_type = UIntType;

// engine characteristics
static constexpr std::size_t word_size = w;
static constexpr std::size_t word_count = n;
static constexpr std::size_t round_count = r;
static constexpr std::array<result_type, array_size> multipliers;
static constexpr std::array<result_type, array_size> round_consts;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w - 1; }
static constexpr result_type default_seed = 20111115u;

// constructors and seeding functions
philox_engine() : philox_engine(default_seed) {}
explicit philox_engine(result_type value);
template<class Sseq> explicit philox_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

void set_counter(std::initializer_list<result_type> counter);

// generating functions
result_type operator()();
void discard(unsigned long long z);

};

6 The template parameter …consts represents the Mk and Ck constants which are grouped as

follows: [𝑀
0
, 𝐶

0
, 𝑀

1
, 𝐶

1
, 𝑀

2
, 𝐶

2
 … 𝑀

𝑁/2−1
, 𝐶

𝑁/2−1
]

7 The following relations shall hold: ,(𝑛 == 2) || (𝑛 == 4) || (𝑛 == 8) || (𝑛 == 16)
, ,.0 < 𝑟 𝑤 <= 𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑙𝑖𝑚𝑖𝑡𝑠 < 𝑈𝐼𝑛𝑡𝑇𝑦𝑝𝑒 >:: 𝑑𝑖𝑔𝑖𝑡𝑠

8 The textual representation of consists of the values of , , , in that𝑥
𝑖

𝐾
0
, … , 𝐾

𝑛/2−1
𝑋

0
, … , 𝑋

𝑛−1
𝐼

order. Note that the stream extraction operator can reconstruct Y from K and X, as needed.

explicit philox_engine(result_type value);

9 Effects: Sets the element of sequence to value. All elements of sequences and (except𝐾
0

𝐾 𝑋 𝐾

) are set to 0. The value of I is set to n-1.𝐾
0

template<class Sseq> explicit philox_engine(Sseq& q);

10 Effects: With and a an array (or equivalent) of length , invokes 𝑊 = ⌈𝑤/32⌉ (𝑛/2) * 𝑊
q.generate(a+0, a+n/2*W) and then iteratively for i= , sets to0, …, 𝑛/2 − 1 𝐾

𝑖

. All elements of sequence are set to 0. The value of I is set
𝑗=0

𝑊−1

∑ 𝑎[𝑖 * 𝑊 + 𝑗] * 232*𝑗()𝑚𝑜𝑑2𝑤 𝑋

to n-1.

void set_counter(std::initializer_list<result_type> counters);

11 Effects: With m=min(counters.size(), n), sets the for i = 0, …, m elements of sequence𝑋
𝑖

𝑋

to values counter[i]. All elements of sequences for i > m if any are set to 0.𝑋
𝑖

● Changes in sub-section 26.6.5 Engines and engine adaptors with predefined parameters

...

template<size_t r>
using philox4x32_r = philox_engine<uint_fast32_t, 32, 4, r, 0xD2511F53, 0x9E3779B9,
0xCD9E8D57, 0xBB67AE85>;

1 Required behavior: The 10000th consecutive invocation of a default-constructed object of type

philox4x32_r<10> produces the value XXXXXXXXX

template<size_t r>
using philox4x64_r = philox_engine<uint_fast64_t, 64, 4, r, 0xD2E7470EE14C6C93,
0x9E3779B97F4A7C15, 0xCA5A826395121157, 0xBB67AE8584CAA73B>;

2 Required behavior: The 10000th consecutive invocation of a default-constructed object of type

philox4x64_r<10> produces the value XXXXXXXXX

using philox4x32 = philox4x32_r<10>;

using philox4x64 = philox4x64_r<10>;

7. Generic counter_based_engine API
An alternative specification divides the Philox engine into 2 entities:

● A pseudo-random function, philox_prf, defined as a class template, which encapsulates the

logic contained in the Philox function (but not the transition algorithm TA or generation

algorithm GA).

● A counter_based_engine class template, which encapsulates the TA and GA described, but

depends on a generic pseudo-random function template parameter to generate a random

sequence. Instantiations of counter_based_engine<philox_prf> result in engines with exactly

the same properties as the philox_engines described in the previous section.

This approach requires slightly more standardized machinery, e.g., a pseudo_random_function concept

to constrain the permissible values of the counter_based_engine’s template parameter, but it paves the

way for a set of engines with desirable properties. For example, the Threefry engine mentioned in

P1932R0 as a candidate for standardization and engines based on widely deployed pseudo-random

functions such as SipHash [10] and Chacha [11] can be accommodated. This can be done either as part

of extending the standard or programmers can implement new pseudo-random functions with desirable

properties for specific purposes (perhaps trading quality or bit-width for speed or size), instantiate a

counter_based_engine and gain access to the power of <random>.

Class template philox_prf
A pseudo-random function (PRF) is a stateless function-like class that returns an array of unsigned

integer values when invoked with an array of unsigned integer values. The Philox function specified in

the description of the TA in section 6 above is just such a function. For the counter-based API, it is

hoisted out of the philox_engine and given an independent existence as a class template.

The philox_prf class template may be declared as follows:

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r, UIntType
...consts>

class philox_prf {
// Exposition only
static constexpr std::size_t key_count = n / 2;

public:
// generic PRF characteristics: types, data and function members
using input_value_type = UIntType;
using output_value_type = UIntType;
static constexpr std::size_t input_word_size = w;
static constexpr std::size_t output_word_size = w;
static constexpr std::size_t input_count = 3 * key_count;
static constexpr std::size_t output_count = n;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w - 1; }

// Philox specific characteristics
static constexpr std::size_t round_count = r;

static constexpr std::array<UIntType, key_count> multipliers;
static constexpr std::array<UIntType, key_count> round_consts;

// signature of generating function
void operator()(std::span<input_value_type, input_count> input,

std::span<output_value_type, output_count> output);

};

The philox_prf’s member operator()(std::span<input_value_type, input_count> input,

std::span<output_value_type, output_count> output) method acts as follows:

1. Copy exactly n/2 values from input into sequence K, as if by doing Ki =input[i]; for i in 0,…,n/2-1,

in order.

2. Copy exactly n values from input into sequence X, as if by doing Xi = input[n/2 + i]; for i in

0,…,n-1, in order.

3. Perform the steps described above in Section VI for the Philox(K, X) function.

4. Copy exactly n values of the Philox function’s final value of X’ to output, as if by doing output[i] =

X’i; for i in 0,…,n-1, in order

The philox_prf has predefined aliases analogous to those of the Philox engine, above:

// PRF for R-round Philox with output consisting of 4 32-bit words
template<int R>
using philox4x32_prf_r = philox_prf<uint_fast32_t, 32, 4, R, 0xD2511F53, 0x9E3779B9,
0xCD9E8D57, 0xBB67AE85>;

// PRF for R-round Philox with output consisting of 4 64-bit words
template<int R>
using philox4x64_prf_r = philox_prf<uint_fast64_t, 64, 4, R, 0xD2E7470EE14C6C93,
0x9E3779B97F4A7C15, 0xCA5A826395121157, 0xBB67AE8584CAA73B>;

// PRF for 10-round Philox with output consisting of 4 32-bit words
using philox4x32_prf = philox4x32_prf_r<10>;

// PRF for 10-round Philox with output consisting of 4 64-bit words
using philox4x64_prf = philox4x64_prf_r<10>;

Pseudo-random functions are stateless, pure functions. So it makes no sense to state the value of the

10000th invocation. Instead, the standard will state the values returned by a specific invocation, e.g.,

With Z={0x243f6a8885a308d3, 0x13198a2e03707344, 0xa4093822299f31d0, 0x082efa98ec4e6c89,

0x452821e638d01377, 0xbe5466cf34e90c6c} , philox4x64_prf(Z) shall return an array containing:

{0xa528f45403e61d95, 0x38c72dbd566e9788, 0xa5a1610e72fd18b5, 0x57bd43b5e52b7fe6}

With Z={0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0},

philox4x32_prf(Z) shall return an array containing:

{0xd16cfe09, 0x94fdcceb, 0x5001e420, 0x24126ea1}

N.B. these values are from the known-answer-test “kat_vectors” in the reference implementation of

Philox [8].

The pseudo_random_function concept
The philox_prf class template has a number of public constexpr values (input_count, output_count,

word_size), dependent class types (result_type) and static public member functions (min(), max()).

These members are required of any class that is intended for use as a pseudo-random function by

counter_based_engine and are formalized as a pseudo_random_function concept.

Class template counter_based_engine
Instantiations of the class template counter_based_engine satisfy the requirements of a random

number engine. The result_type, the word_size, and min() and max() functions are obtained from the

template parameter, prf, which is constrained to satisfy the requirements of a pseudo_random_function.

The period of the resulting engine is thus prf::output_count * 2n*prf::word_size.

The specifications here are very similar to those in the “philox-focused” API above, with only minor

differences arising because various sequence lengths and constants are obtained from the prf template

parameter.

Wording
The changes affect only section “26.6 Random number generation”.

● Changes in section 26.6 Random number generation

…

(5.3) – the operator mullo denotes the low half of the modular multiplication of a and b: 𝑎 * 𝑏()𝑚𝑜𝑑 2𝑤

(5.4) – the operator mulhi denotes the high half of the multiplication of a and b: ()⌊ 𝑎 * 𝑏()/2𝑤⌋

● Changes in sub-section 26.6.1 Header <random> synopsis

…

// 26.6.3.x. pseudo_random_function concept

template <class Prf>

concept pseudo_random_functon = see below;

…

// 26.6.x class template philox_prf

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r,
UIntType ...consts>

class philox_prf;

…

// 26.6.x pseudo random function with predefined parameters.

template<std::size_t r>
using philox4x32_prf_r<r> = see below;

template<std::size_t r>
using philox4x64_prf_r<r> = see below;

using philox4x32_prf = philox4x32_prf_r<10>;

using philox4x64_prf = philox4x64_prf_r<10>;

// 26.6.4 class template counter_based_engine

…

template<pseudo_random_function prf>
class counter_based_engine;

…

// 26.6.5 engines and engine adaptors with predefined parameters.

…

// Philox engine with r rounds
template<int r>
using philox4x32_r = counter_based_engine<philox4x32_prf_r<r>>;

// Philox engine with r rounds
template<int r>
using philox4x64_r = counter_based_engine<philox4x64_prf_r<r>>;

// Philox engine with 10 rounds
using philox4x32 = counter_based_engine<philox4x32_prf>;

// Philox engine with 10 rounds
using philox4x64 = counter_based_engine<philox4x64_prf>;

…

● New sub-section “26.6.x pseudo_random_function concept”

26.6.3.x Pseudo Random function requirements

1. A pseudo random function prf of type Prf is a functional object which contains generic PRF

characteristics used in counter_based_engine.

template <class Prf>
concept pseudo_random_function =

requires(Prf prf,
span<typename Prf::input_value_type, Prf::input_count> in,
span<typename Prf::output_value_type, Prf::output_count> out) {

typename Prf::input_value_type;
typename Prf::output_value_type;
Prf::input_word_size;
Prf::output_word_size;
Prf::input_count;
Prf::output_count;
{ Prf::min() }
->same_as<typename Prf::output_value_type>;
{ Prf::max() }
->same_as<typename Prf::output_value_type>;
prf(in, out);

};

● New sub-section “26.6.x Class template philox_prf”

26.6.x Class template philox_prf

1. A philox_prf is a stateless class describing an algorithm of Philox random number generator

satisfying pseudo_random_function concept. It produces unsigned integer values of type

result_type in the closed interval from a given engine’s state of input_count of0, 2𝑤 − 1[]
input_value_type.

2. The template parameter w defines the range of the produced numbers. The

span<input_value_type, input_count> input of operator() consists of a sequence X of n

input_value_type and sequence K of n/2.

3. The generation algorithm GA(xi) fills span<ouput_value_type, output_count> output with YI:

operator()(input(K, X), Y) // see below

4. The Philox function maps the n/2-length sequence K and the n-length sequence X into an

n-length output sequence. Philox applies an R-round substitution-permutation network to the

values in X. A single round of the generation algorithm performs the following steps:

(4.1) – The output sequence X’ of the previous round (X in case of the first round) is permuted to

obtain the intermediate state V:

𝑉
𝑗

= 𝑋'
𝑓 𝑗()

where = and is defined in Table 1 below, as in [2, 9]: 𝑗 0, …, 𝑛 − 1 𝑓(𝑗)

Table 1. Values for the word permutation f(j)

j=
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n
=

2 0 1
4 0 3 2 1
8 2 1 4 7 6 5 0 3
16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

[Note: for n=2 the sequence is not permuted]

(4.2) – The following computations are applied for the elements of the V sequence:

𝑋
2*𝑘
' = 𝑚𝑢𝑙𝑙𝑜(𝑉

2*𝑘+1
, 𝑀

𝑘
)

𝑋
2*𝑘+1
' = 𝑚𝑢𝑙ℎ𝑖 𝑉

2*𝑘+1
, 𝑀

𝑘() 𝑥𝑜𝑟 𝑘𝑒𝑦
𝑘
𝑞 𝑥𝑜𝑟 𝑉

2*𝑘

where: k = 0 … n/2-1, q is the index of the round: q = , is the kth round key for0…𝑟 − 1 𝑘𝑒𝑦
𝑘
𝑞

round q, ,and Mk and Ck are constants (template parameters).𝑘𝑒𝑦
𝑘
𝑞 = 𝐾

𝑘
+ 𝑞 * 𝐶

𝑘() 𝑚𝑜𝑑 2𝑤

5. After r applications of the single-round function, Philox stores the value of X’ in Y.

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r, UIntType
...consts>

class philox_prf {
// Exposition only
static constexpr std::size_t key_count = n / 2;

public:
// generic PRF characteristics: types, data and function members
using input_value_type = UIntType;
using output_value_type = UIntType;
static constexpr std::size_t input_word_size = w;
static constexpr std::size_t output_word_size = w;
static constexpr std::size_t input_count = 3 * key_count;
static constexpr std::size_t output_count = n;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w - 1; }

// Philox specific characteristics
static constexpr std::size_t round_count = r;
static constexpr std::array<UIntType, key_count> multipliers;
static constexpr std::array<UIntType, key_count> round_consts;

// generic signature of generating function
void operator()(std::span<input_value_type, input_count> input,

std::span<output_value_type, output_count> output);

};

6. The template parameter …consts represents the Mk and Ck constants which are grouped as

follows: [𝑀
0
, 𝐶

0
, 𝑀

1
, 𝐶

1
, 𝑀

2
, 𝐶

2
 … 𝑀

𝑁/2−1
, 𝐶

𝑁/2−1
]

7. The following relations shall hold: ,(𝑛 == 2) || (𝑛 == 4) || (𝑛 == 8) || (𝑛 == 16)
, ,.0 < 𝑟 𝑤 <= 𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑙𝑖𝑚𝑖𝑡𝑠 < 𝑈𝐼𝑛𝑡𝑇𝑦𝑝𝑒 >:: 𝑑𝑖𝑔𝑖𝑡𝑠

void operator()(std::span<input_value_type, input_count> input,
std::span<output_value_type, output_count> output);

8. Effects: fills output according to Philox algorithm (4) with state (K, X) given as an input.

● New sub-section 26.6.x.x Pseudo random functions with predefined parameters

template<std::size_t r>
using philox4x32_prf_r = philox_prf<std::uint_fast32_t, 32, 4, r, 0xD2511F53,
0x9E3779B9, 0xCD9E8D57, 0xBB67AE85>;

template <std::size_t r>
using philox4x64_prf_r = philox_prf<std::uint_fast64_t, 64, 4, r,
0xD2E7470EE14C6C93, 0x9E3779B97F4A7C15,0xCA5A826395121157, 0xBB67AE8584CAA73B>;

using philox2x64_prf = philox2x64_prf_r<10>;
using philox4x64_prf = philox4x64_prf_r<10>;

● New sub-section “26.6.3.4 Class template counter_based_engine”

26.6.3.4 Class template counter_based_engine

1 A counter_based_engine is a random number engine producing unsigned integer values of

type result_type = prf::result_type in the closed interval . The state0, 2𝑝𝑟𝑓∷𝑜𝑢𝑡𝑝𝑢𝑡_𝑤𝑜𝑟𝑑_𝑠𝑖𝑧𝑒 − 1[]
of a counter_based_engine object is of size (prf::input_count + prf::output_count+1) and𝑥

𝑖

consists of a sequence Z of prf::input_count result_types a sequence Y of prf::output_count

result_types and an index, I, of the next value to be returned by the GA from Y. The sequence Z

is treated as the concatenation of a sequence, K, of NK=(prf::input_count-prf::output_count)

result_types, and a sequence, X, of NX=(prf::output_count) result_types. I.e.,

Z = [Ko K1… KNk-1 X0 X1… XNx-1].

In the descriptions that follow, assignments to elements of X and K are understood as

assignments to the corresponding elements of Z.

2 The generation algorithm GA() returns YI, the value stored in the Ith element of Y, in state ,𝑥
𝑖

𝑥
𝑖+1

i.e., after applying the transition algorithm: = TA().𝑥
𝑖+1

𝑥
𝑖

3 The TA is:

I=I+1
If(I == prf::output_count){

prf{}(Z, Y)// Z span is an input and Y is an span output
X = (X+1) // as if X is a prf::output_count * prf::output_word_size-bit

integer
I = 0

}

4 The textual representation of consists of the values of , and I, in that𝑥
𝑖

𝑍
0
, … , 𝑍

𝑝𝑟𝑓∷𝑖𝑛𝑝𝑢𝑡_𝑐𝑜𝑢𝑛𝑡−1

order. Note that the stream extraction operator can reconstruct Y from Z, as needed.

template<pseudo_random_function Prf>
class counter_based_engine {

// Exposition only
public:

// types
using result_type = typename prf::output_value_type;

// engine characteristics
static constexpr std::size_t state_count = prf::input_count;
static constexpr result_type min() { return prf::min(); }
static constexpr result_type max() { return prf::max(); }
static constexpr prf::input_value_type default_seed = 20111115u;

// constructors and seeding functions
counter_based_engine() : counter_based_engine(default_seed) {}
explicit counter_based_engine(prf::input_value_type value);
template<class Sseq> explicit counter_based_engine(Sseq& q);
void seed(prf::input_value_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

void set_counter(std::initializer_list<prf::input_value_type> counter);

// generating functions
result_type operator()();
void discard(unsigned long long z);

};

5 The template parameter prf represents class, which satisfies the pseudo_random_function

concept

explicit counter_based_engine(prf::input_value_type value);

6 Effects: Sets the element of sequence to value. All elements of sequences and (except𝐾
0

𝐾 𝑋 𝐾

) are set to 0. The value of I is set to (prf::output_count-1).𝐾
0

template<class Sseq> explicit counter_based_engine(Sseq& q);

7 Effects: With and a an array (or equivalent) of length , invokes 𝑊 = ⌈𝑤/32⌉ 𝑁
𝐾

* 𝑊

q.generate(a+0, a+NK*W) and then iteratively for i= , sets to0, …, 𝑁
𝐾

− 1 𝐾
𝑖

. All elements of sequence are set to 0. The value of I is set
𝑗=0

𝑊−1

∑ 𝑎[𝑊 * 𝑖 + 𝑗] * 232*𝑗()𝑚𝑜𝑑2𝑤 𝑋

to (prf::output_count-1).

void set_counter(std::initializer_list<prf::input_value_type> counters);

8 Effects: With m=min(counters.size(), prf::output_count), sets the for i = 0, …, m𝑋
𝑖

elements of sequence to values counter[i]. All elements of sequences for i > m if any are set𝑋 𝑋
𝑖

to 0.

● Changes in sub-section 26.6.5 Engines and engine adaptors with predefined parameters

...

// Philox engine with r rounds
template<int r>
using philox4x32_r = counter_based_engine<philox4x32_prf_r<r>>;

// Philox engine with r rounds
template<int r>
using philox4x64_r = counter_based_engine<philox4x64_prf_r<r>>;

// Philox engine with 10 rounds

using philox4x32 = counter_based_engine<philox4x32_prf>;

// Philox engine with 10 rounds
using philox4x64 = counter_based_engine<philox4x64_prf>;

9 Design considerations
Compare approaches

Consistency with existing approaches:
1. A philox-focused API introduced a new engine in the same way as existing C++11 engines.
2. A counter-based-engine API approach introduced an additional new concept of a stateless

pseudo-random function and defining communication protocol between two entities, which
brings in new machinery.

The main reason for existence of the second approach is extendibility. A counter-based-engine approach
allows the extension with a variety of counter-based generators which can be supported via the same
API, such as Threefry, Siphash or other user-defined prf.

It goes for the price of extra complexity in describing the generic protocol between the
counter_based_engine and prf. Because of this complexity different types of data, which is being by prf
is abstracted in a single input_value sequence, which should be reinterpreted by prf implementation to
split it into:

1. counter part (an entity which is monotonically increasing in time),
2. constant state part (which is filled with the seed sequence).

See paragraph 2 in philox_prf wording.

It should be additionally noted that some counter based engines have modifications in the algorithm of
counting, e.g. SHISHUA algorithm [16] has non-unit step for the counter. Such algorithms were
considered too exotic to generic facilities during the discussion in SG6.

Our prototype showed that the implementation of philox_engine has 268 LOC.
Implementation of the second approach took 317 LOC for counter_based_engine and
pseudo_random_function concept + 130 LOC for philox_prf.
See [15] for both prototypes.

Span vs. range
Operator() of prf in the counter-based-engine API approach is the communication protocol between
counter_based_engine class object and pseudo_random_function class object. In order to provide early
diagnostic we introduce pseudo_random_function concept which checks for the valid operator() of prf.

We considered input range and output iterator as a more generic approach to provide more flexibility for
Prf implementations and reuse scenarios. But it pollutes Prf concept with additional template
parameters of the concept and affected counter_base_engine itself:

template<class Prf, class InputRange, class OutputIterator>
concept pseudo_random_function = std::input_range<InputRange> &&
std::sized_range<InputRange> && std::output_iterator<OutputIterator> &

requires(Prf prf, InputRange range, OutputIterator o) {
...
{ prf(range, o) } -> std::output_iterator;

};

template< std::sized_range InputRange, std::output_iterator OutputIterator,
pseudo_random_function<InputRange, OutputIterator>, std::size_t c>
class counter_based_engine;

It complicates the usage of counter_based_engine to the level, which we did not consider adequate for
the purpose of verifying the existence of proper operator() overload in Prf function.

With that we refactored protocol to use std::span, which is sufficient for use with
counter_based_engine, but might not be too generic to use Prf for other hypothetical purposes:

void operator()(std::span<input_value_type, input_count> input,
std::span<output_value_type, output_count> output);

set_counter use case
The following example shows the typical flow for a Monte Carlo simulation of a large number of "atoms"

for a large number of timesteps:

uint32_t global_seed = 999;
for(uint32_t timestep = 0; timestep < Ntimesteps; ++timestep){

for(uint32_t atomid = 0; atomid < Natoms; ++atomid){
philox4x32 eng(global_seed);
eng.set_counter({0, 0, timestep, atomid});
normal_distribution nd;
auto n1 = nd(eng);
auto n2 = nd(eng);
// ...

}
}

Using set_counter() allows creation of the engine on the fly without storing Natoms of states. In addition

it does not prevent parallelisation of either of the loops.

On the down side, one should control the number of random numbers consumed per timestep per

atom. If the number consumed numbers overcome 4*232*2, then sequences in different atoms may

overlap, which brings in undesired cross correlation. The following section discussed the way to avoid

that.

Under certain limitations a similar effect can be achieved via using .discard() function, but it differs in

several aspects. The most critical one:

● .discard() shifts are limited to unsigned long long, which on many systems is 64-bits integer,

while philox4x64 has a period of 4*2^(64*4), thus splitting this sequence in 2 parts would

require 4*2^(64*3 - 64) calls of discard(), while .set_counter() can do the same in one call.

There are other differences:

1. .discard() shifts the counter only forward relative to its current position. This API exists because

some (but not all) engines have efficient algorithms to move their state forward.

2. .set_counter() sets the absolute value for the counter. It is a unique property of counter-based

engines - it is trivial to set their absolute state.

Splitting sequence in sub sequences
P2075R1 revision of this paper had c template argument for counter_based_engine:

template<pseudo_random_function prf, size_t c>
class counter_based_engine.

The main purpose of this parameter was to split counter X into lower c words X1 and higher n-c words

X2. X1 behaves as a normal counter and wraps when depleted. X2 is predefined by the user and is

considered constant by the algorithm.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2075r1.pdf

The intention of this parameter was to add a simple way to split a full sequence of random numbers into

independent (n-c)*word_size subsequences, which can be used for parallelisation and easy creation of

such subsequences on the flight.

Further analysis revealed that this concept can be applicable for a wider set of engines, which makes c

parameter on the level of the engine not generic enough.

As a further design consideration for this methodology we propose to consider a dedicated additional

adapter, such as:

template<template Engine, size_t c>
class subsequence_engine;

This adaptor can be customized for a subset of engines where dedicated optimizations are possible.

Further investigations for this adaptor can be done in a separate paper. Authors removed the c

parameter from this revision.

Using std::array in template arguments
The template parameter consts as a std::array was considered.

// ***
// Alternative API: consts template parameter represented as std::array
// ***

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r,
std::array<UIntType, n> consts>
class philox_engine {

static constexpr std::size_t array_size = n / 2; // Exposition only

public:
…

static constexpr std::array<result_type, array_size> multipliers;
static constexpr std::array<result_type, array_size> round_consts;

…

philox_engine template class is not expected to be frequently used by users - predefined aliases are the

main way to use this engine. Having that in mind, we decided to not introduce a new API technique into

standard for a minor simplification.

philox2x32 and philox2x64
Original paper contained additional aliases:

template<size_t r>
using philox2x32_r = philox_engine<uint_fast32_t, 32, 2, r, 0xD2511F53, 0x9E3779B9>;

1 Required behavior: The 10000th consecutive invocation of a default-constructed object of type

philox2x32_r<10> produces the value XXXXXXXXX

template<size_t r>
using philox2x64_r = philox_engine<uint_fast64_t, 64, 2, r, 0xD2B74407B1CE6E93,
0x9E3779B97F4A7C15>;

2 Required behavior: The 10000th consecutive invocation of a default-constructed object of type

philox2x64_r<10> produces the value XXXXXXXXX

using philox2x32 = philox2x32_r<10>;

using philox2x64 = philox2x64_r<10>;

philox4x32 and philox4x64 define the most broadly used Philox parameter sets (supported in Intel®

MKL, rocRAND, cuRAND, MATLAB, etc.).

philox2x32 and philox2x64 show good statistical properties and performance as well [8], but they are

not broadly used across libraries.

Having two sets of aliases defined in the standard will complicate the choice and we decided to stick

with the current consensus across the libraries by removing philox2x32 and philox2x64.

10Impact on the Standard
This is a library-only extension. It adds one or two new class templates, zero or one new concepts, and a

small number of pre-defined template aliases.

11References
1 P1932R0 “Extension of the C++ random number generators”:

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf.

2 John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as

easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, pages 16:1–16:12, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0771-0

3 L’Ecuyer, Pierre & Simard, Richard. (2007). A Software Library in ANSI C for Empirical Testing of

Random Number Generators. ACM Transactions on Mathematical Software - TOMS.

4 Manssen, Markus & Weigel, Martin & Hartmann, Alexander. (2012). Random number generators

for massively parallel simulations on GPU. The European Physical Journal Special Topics. 210.

10.1140/epjst/e2012-01637-8.

5 Notes for Intel® Math Kernel Library (Intel® MKL) Vector Statistics :

https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10

6 Xu, Linlin & Ökten, Giray. (2014). High Performance Financial Simulation Using Randomized

Quasi-Monte Carlo Methods. Quantitative Finance. 15. 10.1080/14697688.2015.1032549.

7 Wadden, Jack & Brunelle, Nathan & Wang, Ke & El-Hadedy, Mohamed & Robins, G. & Stan,

Mircea & Skadron, Kevin. (2016). Generating efficient and high-quality pseudo-random behavior

on Automata Processors. 622-629. 10.1109/ICCD.2016.7753349.

8 Random123 D. E. Shaw Research ("DESRES"):

http://www.deshawresearch.com/resources_random123.html

9 N. Ferguson, S. Lucks, B. Schneier, B. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The

Skein hash function family. http://www.schneier.com/skein.pdf, 2010.

10 J-P Aumasson and D. J. Bernstein. (2012). “SipHash: a fast short-input PRF”,

https://131002.net/siphash/

11 Y. Nir and A. Langley. (2018). “ChaCha20 and Poly1305 for IETF Protocols”,

https://tools.ietf.org/html/rfc8439

12 P1068R2 “Vector API for random number generation”:

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1068r2.pdf.

13 P1932R3 “Vector API for random number generation”:

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1068r3.pdf.

14 John Salmon’s github:

https://github.com/johnsalmon/cpp-counter-based-engine

15 Alina Elizarova’s github:

https://github.com/aelizaro/cpp-counter-based-engine/tree/alignment_with_proposal

16 SHISHUA: The Fastest Pseudo-Random Generator In the World

https://espadrine.github.io/blog/posts/shishua-the-fastest-prng-in-the-world.html

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf
https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10
http://www.deshawresearch.com/resources_random123.html
https://131002.net/siphash/
https://tools.ietf.org/html/rfc8439
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1068r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1068r3.pdf
https://github.com/johnsalmon/cpp-counter-based-engine
https://github.com/aelizaro/cpp-counter-based-engine/tree/alignment_with_proposal
https://espadrine.github.io/blog/posts/shishua-the-fastest-prng-in-the-world.html

