
Page 1 of 25

P2126R0
2020-03-02

Pablo Halpern (on behalf of Bloomberg): phalpern@halpernwightsoftware.com
John Lakos: jlakos@bloomberg.net

Unleashing the Power of
Allocator-Aware Software Infrastructure

NOTE: This white paper (i.e., this is not a proposal) is intended to motivate continued
investment in developing and maturing better memory allocators in the C++ Standard as
well as to counter misinformation about allocators, their costs and benefits, and whether
they should have a continuing role in the C++ library and language.

Abstract
Local (arena) memory allocators have been demonstrated to be effective at
improving runtime performance both empirically in repeated controlled
experiments and anecdotally in a variety of real-world applications. The initial
development and subsequent maintenance effort of implementing bespoke data
structures using custom memory allocation, however, are typically substantial
and often untenable, especially in the limited timeframes that urgent business
needs impose. To address such recurring performance needs effectively across
the enterprise, Bloomberg has adopted a consistent, ubiquitous allocator-aware
software infrastructure (AASI) based on the PMR-style1 plug-in memory
allocator protocol pioneered at Bloomberg and adopted into the C++17
Standard Library.

In this paper, we highlight the essential mechanics and subtle nuances of
programing on top of Bloomberg’s AASI platform. In addition to delineating how
to obtain performance gains safely at minimal development cost, we explore
many of the inherent collateral benefits — such as object placement, metrics
gathering, testing, debugging, and so on — that an AASI naturally affords. After
reading this paper and surveying the available concrete allocators (provided in
Appendix A), a competent C++ developer should be adequately equipped to
extract substantial performance and other collateral benefits immediately using
our AASI.

Introduction
Bloomberg’s allocator-aware software infrastructure (AASI) allows clients to
readily customize memory allocation strategies to improve runtime
performance – often substantially and sometimes dramatically. Let’s explore

1 polymorphic memory resource model

Page 2 of 25

how to exploit this infrastructure through a couple of examples before diving
into the technical details.

A Simple Example

Consider a simple unique_chars() function, which returns the number of
unique bytes in its string argument:

bsl::size_t unique_chars(const bsl::string& s)
{
 bsl::set<char> uniq;
 uniq.insert(s.begin(), s.end());
 return uniq.size();
}

All of the temporary memory used by the set container is allocated from the
general-purpose heap. We observe, however, that the set is built up
monotonically and destroyed all at once, which is the ideal use pattern for a
sequential allocator (as described later in the “bdlma::SequentialAllocator
and Its Variants” section). Using a sequential allocator is as simple as passing
one to the set constructor:

bdlma::SequentialAllocator alloc;
bsl::set<char> uniq(&alloc);

This one-line change yields a 75–78% reduction in execution time with our
sample input data set. Yet instrumentation might point us to a way to do even
better. Let’s count the number of bytes allocated by interposing a counting
allocator between the set and the sequential allocator:

bdlma::SequentialAllocator alloc;
bdlma::CountingAllocator countingAlloc(&alloc);
bsl::set<char> uniq(&countingAlloc);

For our data set, we observe that a total of less than 2KB is typically allocated
by the set. This amount of memory can be allocated painlessly from the stack
using a LocalSequentialAllocator instead of a plain SequentialAllocator:

bdlma::LocalSequentialAllocator<2048> alloc;
bsl::set<char> uniq(&alloc);

This trivial change cuts another 3–4% from the original execution time (a 15%
reduction compared to the SequentialAllocator version). In total, we’ve cut
execution time by over 80% simply by measuring and experimenting with a
small, local change.

A More Realistic Example

The previous example is artificially simple for illustrative purposes. Let’s now
turn our attention to a more realistic example abstracted from large-scale data

Page 3 of 25

processing software that Bloomberg’s DataLayer team developed. We begin by
declaring a function that must allocate memory in its implementation:

bsl::string_view findInstrument(bsl::string_view wholeTopic,
 bslma::Allocator *transient = 0);

In the Bloomberg’s DataLayer software, the transient argument name implies
that the memory allocated from this allocator is transient, i.e., will be returned
to the allocator before the function returns. Exposing this function’s use of
memory through this implicitly documented interface can reasonably be called
a leaky abstraction, but its pervasive use in DataLayer has been shown to
preserve modularity in all other respects and is thus a reasonable engineering
compromise. The findInstrument function is called within a loop in the run
function:

void processInstrument(bsl::string_view instrument);

void run(const bsl::vector<bsl::string>& topics)
{
 bdlma::SequentialAllocator loopAlloc;
 for (topic_iter topic = topics.begin();
 topic != topics.end(); ++topic) {
 loopAlloc.rewind();
 bsl::string_view instrument = findInstrument(*topic, &loopAlloc);
 processInstrument(instrument);
 }
}

The SequentialAllocator defined in the first line of the run function is well
suited for allocating transient memory, especially when repeated allocate-
deallocate-reallocate cycles are rare (i.e., when allocation is done in the
function body and most deallocation occurs only at the end). The sequential
allocator uses the global heap sparingly, allocating ever larger pools of memory
from which client blocks are carved, thus preserving locality among the
allocated blocks. A final, critical attribute of SequentialAllocator (and all
BDE2 managed allocators, as described in “The bslma Allocator Infrastructure,”
the next major section) is the rewind method, which logically puts the allocator
in its freshly created state, except that any memory blocks already retrieved
from the global heap remain associated with the allocator. Additional use of the
allocator after calling rewind() will reuse these blocks of memory, reducing
global heap interaction even further and keeping allocated blocks hot in the
cache.

Completing our example, the findInstrument function uses the transient
allocator to build a vector:

2 Bloomberg Development Environment

Page 4 of 25

void loadInstrumentPattern(bdlpcre::RegEx *regex);

bsl::string_view findInstrument(bsl::string_view wholeTopic,
 bslma::Allocator *transient)
{
 static bdlpcre::RegEx pattern(bslma::Default::globalAllocator());
 BSLMT_ONCE_DO { loadInstrumentPattern(&pattern); }

 bsl::vector<bsl::string_view> matches(transient);
 matches.reserve(pattern.numSubPatterns() + 1);
 pattern.matchRaw(&matches, wholeTopic.data(), wholeTopic.size());
 return matches.empty() ? wholeTopic : matches[0];
}

The transient allocator is used to provide memory for the vector, which is
destroyed (and therefore releases all of its memory) at the end of the function.
The call to reserve minimizes or eliminates the allocate-deallocate-reallocate
cycle that vectors are known for when they grow one element at a time.

Note the use of the global allocator in the first line of findInstrument. The
object being initialized has static storage duration and will thus outlive the
function call. In a test scenario, it might also outlive the default allocator. The
global allocator should be used for any allocator-aware object with static
lifetime (see the “Choosing an Allocator Type for Optimal Performance” section
later in this paper).

Lessons from the findInstrument Example

The top-to-bottom example in the previous section illustrates

1) the creation of an AA object (a vector) with a custom-selected allocator,

2) the use of sequential allocators for performance gain,

3) engineering tradeoffs (abstraction versus customization) sometimes
needed to take advantage of an AASI,

4) the use of the global allocator for static objects, and

5) the overall simplicity of employing Bloomberg’s AASI to use and
experiment with allocators.

The fifth point deserves some elaboration. How do we know that
bdlma::SequentialAllocator provides the best performance? We don’t. The
guidelines in the “Choosing an Allocator Type for Optimal Performance” section
certainly help, and profiling showed excellent (if not optimal) performance
benefits, but we might still do better. For example, we might increase
performance further by replacing the SequentialAllocator with a
LocalSequentialAllocator. Fortunately, choosing a different allocator is trivial:
Simply replace the allocator type with a different allocator type and profile the
code again to see the performance gain or loss.

Page 5 of 25

The DataLayer team at Bloomberg has benchmarked its codebase using both
the default (new/delete) allocator and ubiquitous use of sequential allocators
and found that sequential allocators provided an order of magnitude speedup
in practice. Microbenchmarks similarly achieved up to a 12x speedup for large
data sets where elements are reused intensively.3 The mechanics of using an
allocator are simple; experimentation with different types of allocators is
feasible because the cost of such experimentation is so low.

The DataLayer code, from which this example is distilled, needs this attention
to detail because it is running near-real-time software in a resource-
constrained environment, i.e., the client PC, where we have no control of the
CPU or memory specifications. We cannot “throw hardware at the problem”; we
must optimize. Higher up the stack, e.g., at points in the application that run
at user interaction frequency rather than streaming data frequency, custom
allocators would make little difference in performance; the programmer can
pretend that allocators don’t exist and use the infrastructure defaults.

The advantages of having an AASI go beyond performance gains,4 delivering
important collateral benefits such as the ability to

1) place entire objects within an arbitrary memory arena,

2) instrument (and gather metrics for) individual regions of arbitrarily large
systems,

3) compose with other allocators that implement triggers and alarms (e.g.,
when a fixed-size buffer overflows), and

4) ensure that memory allocation is properly implemented (e.g., using our
bslma::TestAllocator facility5).

An Overview of This Paper

In this paper, we aim to demonstrate how an application-level developer can
fully exploit the many benefits afforded by a pre-existing AASI platform without
necessarily creating AA types themselves. Specifically, this paper treats
allocator pointers as if they were opaque tokens passed from client code into
AASI classes; we defer the description of how to create an AA class that
actually allocates and deallocates memory using an allocator to a companion
paper.6

We begin by introducing the pure abstract bslma::Allocator interface (also
called a protocol) and, in particular, the concept of a managed allocator, i.e.,

3 lakos16; see Section 8, “Benchmark II: Variation in Locality (Long Running),” pp. 28–47.
4 See “Collateral Benefits” in halpern20a.
5 A version of the test allocator has been proposed for the C++ Standard Library [feher18].
6 halpern20b provides a detailed description of how to create reusable AA library components.

Page 6 of 25

one having an additional release method (a useful but dangerous tool that we
will discuss near the end of the paper). We then present a short description of
each of the allocators that BDE has provided and opine on how best to choose
an appropriate allocator in various situations. Next, we describe how to
associate a particular allocator with an AA object — including a Standard-
Library container — at construction. Finally, we discuss some advanced topics,
including how to use release to extract every last cycle out of the deallocation
process. Along the way, we will alert the reader to common allocator-related
errors and how to avoid them. In Appendix A, we go into additional detail about
the off-the-shelf BDE allocators.

The bslma Allocator Infrastructure
The pure abstract class bslma::Allocator defines a protocol for allocating and
deallocating memory. It stands at the root of a hierarchy of allocator classes,
with concrete classes at the leaves, as shown in the figure below.

A managed allocator manages a pool of memory and returns it to the general
heap (or to the upstream allocator, as described later) upon destruction or
upon a call to the release method. This pooling improves performance by
providing locality for objects that are used together. Typically, a managed
allocator is created for a limited scope (which nevertheless can be long lived) to
construct objects used only within that scope. When the memory pool is
released on destruction, any blocks that have not been returned to the
allocator are automatically freed. This bulk deallocation can be useful for the

bslma::Allocator
(pure abstract)

bdlma::ManagedAllocator
(pure abstract) bslma::NewDeleteAllocator …

ç

bdlma::LocalSequentialAllocator

bdlma::MultipoolAllocator …
ç

bdlma::BufferedSequentialAllocator

bdlma::SequentialAllocator

Page 7 of 25

advanced techniques of winking out and localized garbage collection, both of
which are described near the end of this paper. A managed allocator should be
derived from the bdlma::ManagedAllocator pure abstract class.

Allocators are typically designed such that an instance can be accessed safely
by only one thread at a time (i.e., they are not thread aware) since having
multiple threads allocate and deallocate from the same pool would destroy
locality. That does not mean that they cannot be used in multithreaded
programs. On the contrary, single-threaded access is ideal for avoiding
synchronization overhead when objects are created, used, and destroyed all
within a single thread. Moreover, an allocator that is not thread aware can still
be effective if a set of objects moves to a new thread, as long as the allocator
moves with them and is never used in an interleaved fashion by more than one
thread.

There are two allocators that are known globally throughout the program: the
default allocator and the global allocator. As its name implies, the default
allocator is used to allocate memory when no other allocator is specified. The
global allocator is reserved for constructing objects of static duration, including
objects at global scope. In rare cases when creating an AA object of static
duration is absolutely necessary, the developer must explicitly pass
bslma::Default::globalAllocator() to its constructor to prevent improperly
using the default allocator. Typically, both default and global allocators refer to
the bslma::NewDeleteAllocator singleton. Changing either of them to refer to a
different allocator is a task deferred to the developer in charge of the program
as a whole (i.e., the owner of main()) and is described in the “Advanced Topics”
section of this paper.

With rare exceptions, the allocators in the BDE collection of package groups
are designed to allow chaining, whereby an allocator may be constructed with a
pointer to another upstream allocator. When the first allocator runs out of its
own private storage, it obtains memory from its upstream allocator. If an
upstream allocator is not provided, the current default allocator is used.

Chaining allows the features of multiple allocators to be combined. For
example, a multipool allocator can be made to use a preallocated buffer by
choosing a buffered sequential allocator as its upstream allocator. Similarly,
memory usage by multiple locally managed allocators can be monitored for
efficiency and correctness by choosing a test allocator as their upstream
allocator.

Three Off-the-Shelf Allocators
In this section, we introduce three BDE-provided allocators that every user
should be aware of when tuning the memory-allocation performance of their

Page 8 of 25

program. Also see the “Allocator Types that Provide Nonperformance Collateral
Benefits” section later in this paper and in Appendix A, where we list briefly
other allocators included in the BDE library.

bslma::NewDeleteAllocator

The new-delete allocator simply forwards allocation requests to global operator
new and deallocation requests to global operator delete. It is the default
default allocator, i.e., a singleton of type bslma::NewDeleteAllocator is the
default allocator unless some other default is set. To explicitly obtain this
singleton, call bslma::NewDeleteAllocator::singleton(). The new-delete
allocator is thread aware and always available. When the performance of the
global new and delete is adequate, bslma::NewDeleteAllocator is an effective
way to insulate code from changes to the default allocator.

bdlma::MultipoolAllocator

A bdlma::MultipoolAllocator object consists of an array of pools, one for each
geometrically increasing request size in a range up to some specified
maximum. Each time a block is requested, it is provided from the most
appropriately sized pool, and is returned to that pool when that block is freed.
When a pool is exhausted, the allocator replenishes it using chunks obtained
from the upstream allocator (typically the default allocator), with such chunks
having increasingly larger size up to a built-in limit. Requests that exceed the
maximum pool size pass directly through to the upstream allocator. The design
of bdlma::MultipoolAllocator makes allocations fast (because finding the
best-fit free block is so efficient and because there is no thread
synchronization), eliminates fragmentation, and maximizes locality (i.e.,
minimizes diffusion).

A bdlma::MultipoolAllocator is ideal for node-based containers with frequent
insertions and deletions. When using this allocator within a loop, create the
bdlma::MultipoolAllocator in the scope outside of the loop, so that the blocks
obtained from the upstream allocator can be re-used efficiently.

bdlma::SequentialAllocator and Its Variants

A bdlma::SequentialAllocator supplies memory from a contiguous block
sequentially until the block is exhausted and then dynamically allocates new
blocks of geometrically increasing size from the upstream allocator (usually the
default allocator). Returning memory to a bdlma::SequentialAllocator is a no-
op; any deallocated memory remains unavailable for reuse until it is explicitly
released (via the release or rewind methods) or the allocator object itself is
destroyed. No allocator is faster for allocating memory than a

Page 9 of 25

bdlma::SequentialAllocator, nor does any other allocator provide better
locality for allocated blocks of disparate sizes.

A bdlma::SequentialAllocator is ideal for data structures that get built up
monotonically (elements are added but not removed), used, and then
destroyed. Since a no-op deallocate means that object destructors do not
return memory to the allocator, the developer, when using a sequential
allocator in a loop, must take special care to prevent the allocator from
consuming memory blocks of ever-increasing size, without bound, from its
upstream allocator. The bdlma::SequentialAllocator provides a rewind
method that logically frees all allocated memory but, unlike release, retains
the pool of blocks obtained from the upstream allocator for reuse in
subsequent allocations. A well-constructed loop using a
bdlma::SequentialAllocator would call rewind in every iteration:

bdlma::SequentialAllocator alloc;
for (int i = 0; i < N; ++i) {
 alloc.rewind(); // Don't forget to do this!
 // ... use alloc ...
}
alloc.release(); // optional (if alloc won't be destroyed soon)

In the loop above, memory is allocated from the upstream allocator (the default
allocator, in this case) only if an iteration requests more memory from alloc
than any prior iteration. Eventually, memory consumption will reach a high-
water mark and subsequent uses of alloc will be extremely efficient.

A bdlma::BufferedSequentialAllocator is a variation of
bdlma::SequentialAllocator that is constructed with an initial buffer, avoiding
allocation from the upstream allocator unless the initial buffer is exhausted.
Another variant is bdlma::LocalSequentialAllocator<SIZE>, which has an
initial buffer of specified SIZE built into the allocator’s footprint, making it ideal
for allocating memory directly from a fixed-sized buffer on the program stack:

// No allocation from the heap unless tempStr grows larger than 128 bytes
bdlma::LocalSequentialAllocator<128> stackAlloc;
bsl::string tempStr(&stackAlloc);
// Code that builds up tempStr

Choosing an Allocator Type for Optimal Performance
Before choosing an allocator for constructing a set of AA objects, consider
whether custom allocation is truly needed. The main reasons for needing
custom allocation are listed here.

1) To reduce time spent on allocation and deallocation: Profilers such
as Quantify, gprof, and the Callgrind plugin for Valgrind will reveal where
a program is consuming CPU resources. If allocation and deallocation are

Page 10 of 25

consuming significant CPU time, sequential and multipool allocators can
drastically improve performance.

2) To reduce memory diffusion: Diffusion occurs when memory blocks in
the working set7 are spread throughout physical memory, causing cache
misses and page faults. Vtune and Valgrind can help diagnose this
problem. Local (managed) allocators can significantly improve locality,
thus improving cache and virtual-memory effectiveness.

3) To exploit non-performance-related collateral benefits: To instrument
code to track memory use or to place objects into specific parts of
memory, an allocator is the best option.

The remainder of this section focuses on performance (reasons 1 and 2). If
allocators are likely to improve the application’s performance, the following
guidelines will help determine which allocator (or combination of allocators) to
use. The developer should profile the application before and after altering the
code and be willing to experiment; easy experimentation is one of the main
benefits of pluggable allocators.

• When constructing an AA object of static duration (i.e., a static variable,
static member variable, global variable, or namespace-scoped variable) or
thread duration (a thread-local variable), use the global allocator
(obtained by calling bslma::Default::globalAllocator()). Developers
can use a custom allocator if they can ensure that it will exist for the
entire lifetime of the object.8 Do not use the default allocator for static
objects (e.g., by not specifying an allocator) because such use causes the
default allocator to be set to the “default default” for the duration of the
program (i.e., frozen, explained more in the “Changing the Default and
Global Allocators” section) and thus interferes with the owner of main
being able to set the default allocator after static objects are constructed.

• When constructing an AA object that is a member of another AA object or
which is logically part of another AA object (i.e., when creating an AA
class), use the same allocator as the containing object. We cover creating
AA classes in detail in a subsequent paper.9

• When constructing an AA object that will be swapped with or moved into
another AA object, use the allocator retrieved from the object into which
the result will be moved or swapped. To retrieve the allocator from object
X, call X.allocator() or (for types that come from the Standard Library)
X.get_allocator().mechanism(). Matching the other object’s allocator

7 The working set of a process is the collection of information referenced by the process in a
specific period of time [denning68].
8 Defining objects with global, namespace, class, or file scope that require initialization is a
design violation, irrespective of the allocator.
9 halpern20b

Page 11 of 25

ensures that the move or swap operation will take constant time and will
not throw an exception.

• Do not use the allocator retrieved from an object to construct a nonowned
variable unless that local variable is intended to be swapped or moved
into the object or one of its members, as described in the previous
bulleted item. The allocator imbued into an object is intended for use
only by members of that object; other uses could exhaust or fragment the
object’s memory pool.10

• When constructing an object that will be modified by multiple threads in
an interleaved fashion, choose a thread-aware allocator, such as the
global allocator or bslma::NewDeleteAllocator::singleton().

• When constructing a short-lived AA object, such as a temporary string on
the stack, consider using bdlma::LocalSequentialAllocator, which can
often avoid accessing the global heap entirely.

• When constructing a large data structure that will be built up
monotonically (elements added, but rarely, if ever, individually removed),
consider using bdlma::SequentialAllocator or
bdlma::BufferedSequentialAllocator. If the object being constructed is
a vector, string, or unordered set/map, we strongly recommend calling
reserve with the expected or maximum size of the container or string
(before inserting the first element) to avoid allocating memory blocks that
become unused during a container resize.

• When constructing a data structure that will experience numerous
insertions and deletions, consider using bdlma::MultipoolAllocator to
enable efficient memory reuse with robust locality. Chaining a
bdlma::SequentialAllocator upstream from a
bdlma::MultipoolAllocator sometimes yields a noticeable performance
benefit over either one alone. As always, measure and experiment; do not
simply trust intuition or some rule of thumb.

• When creating local AA objects within a deep (possibly recursive) call
hierarchy, consider creating a top-level bdlma::MultipoolAllocator and
passing it down the call chain. Local AA objects in each function can use
the passed-in allocator such that, as each function frame is popped from
the call stack, local-variable destructors return memory blocks to the
pool. Those newly freed blocks, while still hot in cache, can be
immediately reused by AA variables in the next function call.

10 For the same reason, a local allocator should never be chained to the allocator retrieved from
an object, even within that object’s constructors or member functions.

Page 12 of 25

Using Allocators with the BDE AASI
If allocators provide the service of allocating memory, then instances of AA
types are the clients of that service. The BDE library provides a large number of
general-purpose classes as well as classes that have specific applicability to
Bloomberg’s business. Not all of those classes allocate memory, but those that
do allocate give the programmer the option of customizing that allocation by
providing an allocator on object construction.

The first step as a programmer using a BDE AA type is to determine whether
custom allocation is desirable at all. Just because a type allows choosing a
custom allocator doesn’t mean that one is necessary; unless the default
allocation strategy is deemed unacceptable (e.g., as indicated by profiling), the
programmer can simply construct the object without supplying an allocator:

bdlc::BitArray ba(96); // bit array of length 96 using default allocation

To customize the bit array’s allocation strategy requires creating an instance
(i.e., defining a variable) of the chosen allocator type and passing its address as
an additional argument to the AA type’s constructor. Using
LocalSequentialAllocator as an example, let’s create a bit array that allocates
the first 128 bytes of memory from a local stack buffer:

bdlma::LocalSequentialAllocator<128> alloc;
bdlc::BitArray ba(96, &alloc); // Bit array using custom allocation

In this example, the bit array will fit entirely within the stack buffer and, in
fact, can grow quite a bit larger without going to the global heap for memory.

Note that the constructed AA object (ba in this case) retains a pointer to the
allocator. Returning an AA object by value (usually a bad idea; see the
“Copying, Moving, Inserting, and Returning AA Objects” section) or returning a
pointer to a dynamically allocated AA object will result in a dangling pointer if
the returned object was constructed using a local allocator.

Once constructed, the allocator pointer associated with an object is stable
throughout the AA object’s lifetime. This behavior is similar to that of a
polymorphic object’s vtbl pointer; once the constructor completes execution, it
never changes until the destructor is invoked, even if the object is assigned to.

Copying, Moving, Inserting, and Returning AA Objects
The copy constructor of a BDE-style AA type never uses the allocator of the
copied-from object. Instead, the newly constructed copy is imbued with the
address of the currently installed default allocator. In contrast, the move
constructor (C++11 and later or simulated in C++03 with bslmf::MovableRef)
of an AA type does imbue the new object with the allocator of the moved-from

Page 13 of 25

object, achieving the same end result as if the moved-from object had been
initially constructed directly at the new location.

An AA type provides an extended copy constructor and an extended move
constructor that generally do the same job as the copy and move constructors,
respectively, but allow the programmer to provide the address of an allocator
via a trailing argument:

bsl::vector<int> vec(10, 8); // original (w/default allocator)
bdlma::SequentialAllocator alloc2;
bsl::vector<int> vec1(vec, &alloc2); // extended copy ctor
bsl::vector<int> vec2(std::move(vec), &alloc2); // extended move ctor (C++11)
bsl::vector<int> vec3(bslmf::MovableRefUtil::move(vec),
 &alloc2); // extended move ctor (C++03)

In the case of the extended move constructor, if the supplied allocator is the
same as the one used by the moved-from object, the behavior is identical to the
(nonextended) move constructor; otherwise, the behavior is identical to the
extended copy constructor. Thus, the extended move constructor automatically
optimizes the move when possible while giving the programmer control over the
constructed object’s allocator.

The bsl package group contains (BDE-style) AA versions of most of the
standard containers (bsl::vector, bsl::set, bsl::unordered_map, etc.).
Include the bsl variants of standard headers (e.g., #include <bsl_vector.h>
instead of #include <vector>) to get the versions that follow all of the AA rules
described here.

When an AA object is inserted into an AA container, the container uses the
object’s extended copy or move constructor to construct the new element,
passing its own allocator as the trailing argument, which ensures that all of the
elements have the same allocator as the container itself. The performance and
collateral benefits of the allocator are thus seamlessly extended to the entire
container and its contained elements.

Try to structure self-contained subsystems such that items being move-
assigned or swapped with each other are constructed with the same allocator.
As mentioned in the previous section, the allocator pointer for an object
remains constant throughout the object’s lifetime. An operation such as move
assignment or swap, which would normally simply move pointers,
“degenerates” to a copy operation if the objects being assigned or swapped use
different allocators. (In fact, the standard requires that standard containers
have the same allocator when calling member swap. The BDE library currently
relaxes this requirement but might not do so forever.) A move assignment
manifesting as a copy is actually quite rare in practice because the most
common uses of move assignment and swap are within container operations

Page 14 of 25

such as insert or erase or when calling sorting or shuffling algorithms on
sequences within a container. Since all of the elements in a container have the
same allocator as the container (and therefore as one another), the issue of
assigning or swapping between elements with different allocators is moot for
the vast majority of oft-repeated (i.e., performance-critical) operations.

Returning AA types by value is contraindicated; a better practice is passing
these types by address so that the caller can configure the allocator
appropriately for the caller’s purposes. Consider an application function,
makeIntSequence, that fills a vector with the integers 1 to n where n is a
function argument. The vector result is passed to the function by address,
allowing the caller to benefit from an optimized allocation strategy:

void makeIntSequence(bsl::vector<int> *v, int n) {
 v->reserve(n);
 for (int x = 1; x <= n; ++x) {
 v->push_back(x);
 }
}

bdlma::LocalSequentialAllocator<300> mySeqAllocator;
bsl::vector<int> seq(&mySeqAllocator);
makeIntSequence(&seq, 60);

“Returning” AA types via a pointer argument pays huge performance dividends
when calling a function within a loop. If the object is returned by value, it
needs to be constructed and destroyed each time through the loop. Conversely,
if the object is passed in by address, it can be created (once) outside the loop
and then reused every time through. For containers like vector, such
construction/destruction avoidance can eliminate a lot of allocations and
deallocations since the vector grows to some high-water mark and stays there
until the loop terminates.11

Aside from performance concerns, returning an AA type by value can cause
issues with correctness. Because of copy and move elision, the object received
by the caller of a return-by-value function will end up capturing the allocator
specified on construction of the return value rather than the (expected) default
allocator. This behavior can be both surprising and dangerous as shown in the
following rewrite of the makeIntSequence example in which the function author
is attempting (incorrectly) to optimize the vector allocation.

bsl::vector<int> makeIntSequence(int n) {
 bdlma::LocalSequentialAllocator<512> mySeqAllocator;
 bsl::vector<int> ret(&mySeqAllocator);
 ret.reserve(n);

11 The benefit of returning a value via a pointer is not limited to AA types; any type that
allocates memory or has an expensive constructor or destructor benefits from this treatment.

Page 15 of 25

 for (int x = 1; x <= n; ++x) {
 ret.push_back(x);
 }
 return ret;
}

bsl::vector<int> seq = makeIntSequence(60); // Disaster waiting to happen

In the code above, the variable ret will be constructed with a buffered
sequential allocator even though the caller never intended that. Worse than
that, the allocator itself has gone out of scope. Worse still, the error is unlikely
to be detected until much later, when reading seq returns random data from
the stack or modifying seq corrupts the stack. If returning an AA type by value
is absolutely necessary, then it is safest either to construct it using the default
allocator or (in the case of some factory functions) to allow the caller to pass
the result allocator as an (optional) argument.

Allocator Types that Provide Nonperformance
Collateral Benefits
The benefits of pluggable allocators extend beyond performance. In this
section, we describe two important allocator types that provide the collateral
benefits of instrumentation and object placement, respectively.

bslma::TestAllocator

As its name implies, the test allocator is used for testing. It gathers metrics and
provides debugging facilities related to the program’s use of memory. The most
common use of a test allocator is in the test driver of an AA component. The
use of a test allocator for validating the operation of an AA type and the use of
a test allocator as an upstream allocator to test other allocators are covered in
subsequent papers.12

For application programmers, the test allocator can help ensure that the
program is using allocators correctly. If a program is experiencing mysterious
crashes, a test allocator can be inserted into the allocator chain to detect
memory leaks and logic errors in which the program writes beyond the start or
end of an allocated block.

The test allocator provides the following features:

• keeps track of the amount of memory (in bytes and blocks) allocated and
deallocated,

• detects memory leaks,

12 halpern20b; weis20

Page 16 of 25

• detects attempts to deallocate the same block twice,

• detects certain overrun and underrun errors,

• dumps information about allocations and deallocations to the console
under program control, and

• throws an exception after a configurable number of allocation operations.
This advanced feature is used to test the exception safety of AA types.

Pass a test allocator to an AA object constructor to gather data on the number
and size of allocations and high-water marks in memory usage. Pass a test
allocator as the upstream allocator to another allocator to test whether that
allocator is being used correctly. For example, creating a sequential allocator
outside of a loop but using it inside the loop will cause unbounded growth in
the use of the upstream allocator, which can be detected during testing by
using a test allocator as the upstream allocator. In some cases, temporarily
setting the default allocator to a test allocator may be appropriate to facilitate
counting allocations and deallocations from the default allocator in a specific
region of code.

Shared Memory Allocators

An allocator can also be used to place objects into special memory regions. An
example would be an allocator that manages memory in memory-mapped
pages.13

To work correctly, every part of the object, including the footprint of the object
itself, must be allocated using the memory-mapping allocator; a programmer
should never construct a static- or automatic-lifetime object with this type of
allocator. One way to allocate an object from an allocator is to pass the
allocator (not the allocator’s address) to the placement-style operator new.
Note that, when using operator new in this way, the programmer must also
pass the allocator’s address to the object’s constructor. To delete an object
allocated in this way, call the allocator’s deleteObject method.

typedef bsl::vector<bsl::string> VecType;
bslma::Allocator& alloc = my_MemoryMappingAllocator::singleton();
VecType v1(&alloc); // BAD IDEA: object footprint not in mapped memory
VecType *v2_p = new(alloc) VecType(&alloc); // OK: mapped footprint
v2_p->push_back("hello"); // string element in mapped memory
// ...

13 Bloomberg’s Big environment is one of several very large, multifunction processes that run
on Bloomberg’s servers and execute terminal functions on behalf of users. The user’s state is
stored in a memory-mapped file, which is mapped into whichever Big process a user is
temporarily assigned to. All objects created in that file are allocated using a Bloomberg internal
allocator called a_bdema_GmallocAllocator.

Page 17 of 25

alloc.deleteObject(v2_p); // Don’t forget to free the memory.

Using Allocators with Shared and Managed Pointers
An allocator can occupy several different roles in a single instance of one of the
smart pointer types, bsl::shared_ptr<T> or bslma::ManagedPtr<T>:

• as the source of memory for the managed object’s footprint;

• as the deleter to destroy and deallocate the managed object. Although it
can be specified independently, in a correct program the deleter must
agree with (refer to the same allocator as) the source of the object’s
memory.

• as a constructor argument to the managed object, used by that object to
allocate memory outside of its footprint;

• as the source of memory for the internal representation of the shared
pointer itself (bsl::shared_ptr only).

In most cases, the same allocator should appear in all of these roles. To avoid
inadvertent divergence, manually constructing these smart pointers and
supplying allocators for each role is discouraged in favor of using the factory
functions, bsl::allocate_shared<T> or
bslma::ManagedPtrUtil::allocateManaged<T>, each of which take a single
allocator argument and use it consistently:

bsl::shared_ptr<bsl::string> sharedStr =
 bsl::allocate_shared<bsl::string>(&alloc1, "hello");
bslma::ManagedPtr<bsl::string> managedStr =
 bslma::ManagedPtrUtil::allocateManaged<bsl::string>(&alloc1, "hello");

The load methods of both pointer types are similarly subject to inadvertent
divergence in the use of allocators. Instead, call the factory functions above and
assign the result:

sharedStr = bsl::allocate_shared<bsl::string>(&alloc2, "world");
managedStr =
 bslma::ManagedPtrUtil::allocateManaged<bsl::string>(&alloc2, "world");

The shared internal representation of a bsl::shared_ptr and the deleter for
both bsl::shared_ptr and bslma::ManagedPtr logically belong to the pointed-to
object and have the same lifetime as the pointed-to object, i.e., they are
destroyed (and the shared representation is deallocated) when the last smart
pointer referring to the pointed-to object is destroyed. Smart pointers are often
used when tracking the lifetime of the pointed-to object is difficult or
impossible; choosing allocators having global scope when constructing them is
advisable.

Page 18 of 25

A common cause of confusion for smart pointer users is that, although the
interface to bsl::shared_ptr and bslma::ManagedPtr have constructors that
accept allocator arguments, smart pointers are not AA objects. The smart-
pointer templates do not have extended copy and extended move constructors,
nor do they have an allocator() (or get_allocator()) method. Unlike AA
types, copying or moving a smart pointer, either by copy construction or by
copy/move assignment, will result in the target of the copy or move having the
same allocator as the original. The allocator associated with a smart pointer
can change over the lifetime of the pointer instance, i.e., through assignment,
in contradiction of the rule for AA types that the allocator never changes:

bsl::shared_ptr<int> p1 = bsl::allocate_shared<int>(&alloc1, 1);
bsl::shared_ptr<int> p2 = bsl::allocate_shared<int>(&alloc2, 2);
bsl::shared_ptr<int> p3(p1); // copy-constructed p3 uses alloc1
p1 = p2; // p1 uses alloc2 after assignment

Finally, because the smart-pointer classes do not define the
bslma::UsesBslmaAllocator type trait that identifies classes as being AA, a
container of smart pointers does not imbue its allocator into its elements.
Thus, most of the qualities of an AA type do not hold for either smart-pointer
type.

Advanced Topics
Since this paper is about using the BDE AASI effectively, to be thorough we
explain the features and techniques for getting every last ounce of value from
it. The topics in this section are advanced but accessible to anyone with a
moderate amount of experience using allocators.

Changing the Default and Global Allocators

The typical reason to explicitly configure the global or default allocator is for
testing. In production code, the default and global allocators are almost never
changed from their initial value of bslma::NewDeleteAllocator::singleton().
The direct mechanism for setting the default or global allocator is to call
bslma::Default::setDefaultAllocator or
bslma::Default::setGlobalAllocator, respectively. Only the owner of main()
should call these functions. The arguments to these functions should have
static lifetime. Once the default allocator has been used, it cannot be changed
using setDefaultAllocator. In practice, this means that any variable of AA
type that is constructed without an explicit allocator argument before main
runs will freeze the default allocator.

Once frozen, the default allocator can still be changed for a limited scope, e.g.,
to install a counting or test allocator for a region of code. This temporary
replacement can be accomplished by employing the

Page 19 of 25

bslma::DefaultAllocatorGuard class, which installs a new default allocator
and then automatically reverts to the previously installed allocator when the
guard goes out of scope. Note the default (or global) allocator should never be
changed if more than one thread is running. The guard is primarily intended
for validating correct behavior of AA classes in test drivers.

For more information about changing the default allocator, including full usage
examples, see the component-level documentation for the bslma_default and
bslma_defaultallocatorguard components. 15

Winking Out

A managed allocator, such as bdlma::SequentialAllocator or
bdlma::MultipoolAllocator, will reclaim all allocated memory on destruction
or when the release() or rewind() method is called. Releasing memory in this
way does not call any destructors and thus avoids accessing individual blocks
unnecessarily. A specific optimization technique, called winking out, involves
reclaiming memory for a container, especially one that holds other AA objects,
without invoking the container’s destructor and thus the destructors for its
elements. To wink out a container, first create a managed allocator and then
allocate the container itself from the allocator rather than creating it on the
stack. That way, when the allocator goes out of scope, the container and all of
its allocated memory are freed all at once:

{
 bdlma::MultipoolAllocator alloc;
 bsl::vector<bsl::list<bdlt::Calendar> >& data =
 *new(alloc) bsl::vector<bsl::list<bdlt::Calendar> >(&alloc);
 // ... Build up and use 'data' here ...
 // When 'alloc' goes out of scope, 'data' gets winked out;
 // no need to call 'alloc.deleteObject(&data)'.
}

In the example above, data is a reference to a vector allocated from the
allocator (using the placement-style operator new, as described in the “Shared
Memory Allocators” section). The vector’s destructor is never called, but all
allocated memory blocks are returned to the heap when alloc goes out of
scope.16

Winking out is a powerful technique but is also dangerous. It can be used to
successfully reclaim a data structure’s memory only if (1) every subpart of the

15 bloomberga. bloombergb
16 The C++ Standard states that an object’s lifetime ends when “. . . the storage which the
object occupies is released, or is reused by an object that is not nested within [it]” [cpp17,
section 6.8, paragraph 1.4, p. 74]. Thus, freeing an object without invoking its destructor is
well-defined (valid) C++.

Page 20 of 25

data structure that allocates memory uses the provided allocator and (2) no
part of the data structure has a destructor with side effects other than
releasing memory to the allocator. (Nonsemantic side effects in destructors,
such as logging, will not happen, but that should cause no additional issues.)
In particular, if a destructor releases a nonmemory resource, then that type is
not a candidate for winking out because failing to run its destructor would
result in a resource leak. For this reason, winking out is inappropriate in
generic (template) code unless the template arguments are carefully
constrained.

Local Garbage Collection

As a final example of the expressive design power that managed allocators
provide, let’s look at winking out as a technique not for improving performance
(though it does that, too) but for simplifying the correct implementation of a
data structure. Consider the problem of managing memory for an arbitrary
graph (possibly with cycles). Representing a graph in such a way that nodes
can be reclaimed without leaks or double deletions is notoriously difficult.
Using a managed allocator, however, the nodes can be leaked without negative
consequences because the entire graph is reclaimed when the allocator is
destroyed:

struct GraphNode {
 bsl::string d_payload;
 bsl::vector<GraphNode *> d_outgoingEdges;
 GraphNode(const bsl::string& payload, bslma::Allocator *alloc);
 ~GraphNode() { }
};

GraphNode::GraphNode(const bsl::string& payload, bslma::Allocator *alloc)
 : d_payload(payload, alloc), d_outgoingEdges(alloc) {
 d_outgoingEdges.reserve(2); // Typical fan-out is 2.
}
// ...
{
 bdlma::SequentialAllocator alloc;
 GraphNode *start = new(alloc) GraphNode("start", &alloc);
 // ...
 GraphNode *n = new(alloc) GraphNode(nodename, &alloc);
 start->d_outgoingEdges.push_back(n);
 n->d_outgoingEdges.push_back(start); // cycles are no problem
 // ...
 // 'alloc' destructor calls 'alloc.release()'
}

Note that no GraphNode object is ever individually destroyed or deallocated in
the example above. Instead, the entire graph is deallocated when the allocator
goes out of scope. Not only is this code simpler than using, e.g., reference-
counted pointers (for which cycles are a huge problem), but it is likely more

Page 21 of 25

efficient. Large graphs created with shared pointers have been known to
overflow the call stack on destruction because each node’s destructor
recursively calls the destructor for the next node in the graph.

Conclusion
Customized local memory allocation can improve the runtime performance of
most applications, sometimes dramatically. Writing custom data structures,
however, is inherently costly and often impractical in real-world applications.
Having a consistent and ubiquitous AASI based on the BDE/C++17-PMR style
enables every application developer to realize essentially all of the benefits of
custom memory allocation with minimal effort and much reduced time to
product than would otherwise be possible.

The BDE AASI comes with a rich supply of allocators that can be used off-the-
shelf to effectively address a wide variety of application design patterns and
scenarios. By following a few simple rules, these patterns can be identified and
allocators can be applied safely and effectively to improve performance. What’s
more, with some additional effort, these allocators can be tuned to extract
nearly every cycle that might be available.

The potential to improve runtime performance alone is compelling. Yet
maximizing the value of our ubiquitously interoperable AASI will be achieved
only by applying knowledge of the many convenient and productive ways —
beyond mere performance — by which such a robust infrastructure can be
exploited:

• placing objects at a particular location in memory, e.g., on the stack or in
file-mapped memory,

• measuring and reporting per-object memory usage,

• testing correctness of allocation, and

• implementing efficient local garbage collection, e.g., in graph data
structures.

By applying our recommendations, developers can benefit from the power of
AASI.

Page 22 of 25

Appendix A: Other Allocators in the BDE library
Table 1 is a short list of other allocator types that the BDE infrastructure
library provides. More information about each allocator type is found in its
component-level documentation.17

Table 1: Additional BDE allocators

Allocator Type Purpose
bslma::MallocFreeAllocator Uses the C library functions malloc and

free to manage memory. Useful for
bypassing a user-defined replacement
for global operator new.

bdlma::AligningAllocator Allows clients to specify both size and
alignment of blocks to allocate. (Note
that most containers cannot take
advantage of this feature.)

bdlma::ConcurrentMultipoolAllocator Similar to a
bdlma::MultipoolAllocator but safe for
concurrent allocation/deallocation.

bdlma::ConcurrentPoolAllocator A concurrent allocator optimized for
blocks of a single size.

bdlma::CountingAllocator Counts the number of bytes allocated
from the upstream allocator. (A mini
version of the test allocator, with less
overhead.)

bdlma::GuardingAllocator Uses virtual memory faults to detect
buffer overruns for debugging.

bdlma::HeapBypassAllocator Allocates memory directly from the OS,
without calling new/delete or
malloc/free.

17 bloombergc

Page 23 of 25

Appendix B: Mapping BDE Names to C++17 Names
Through Bloomberg’s efforts, much of the BDE allocator system was adopted
as the PMR section of the C++17 Standard, using C++ standard naming
conventions. Table 2 shows an approximate mapping of BDE types and free
functions to their C++17 equivalents. All BDE names are in namespace
BloombergLP, and all C++17 names are in namespace std.

Table 2: BDE to C++17 name mappings

BDE Name Approximate C++17 Equivalent
bslma::Allocator pmr::memory_resource

bdlma::ManagedAllocator no equivalent18

bsl::allocator<T> pmr::polymorphic_allocator<T>

bslma::NewDeleteAllocator::singleton() pmr::new_delete_resource()

bdlma::MultipoolAllocator pmr::unsynchronized_pool_resource

bdlma::SequentialAllocator or
bdlma::BufferedSequentialAllocator

pmr::monotonic_resource

bdlma::LocalSequentialAllocator no equivalent
bslma::Default::defaultAllocator() pmr::get_default_resource()

bslma::Default::setDefaultAllocator() pmr::set_default_resource()

bslma::Default::globalAllocator() no equivalent
bslma::Default::setGlobalAllocator() no equivalent
bsl::string
bsl::vector<T>
bsl::list<T>
bsl::set<T>
bsl::map<K,V>
bsl::unordered_set<T,H,E>
bsl::unordered_map<K,V,H,E>

pmr::string
pmr::vector<T>
pmr::list<T>
pmr::set<T>
pmr::map<K,V>
pmr::unordered_set<T,H,E>
pmr::unordered_map<K,V,H,E>

	

18 Although the ManagedAllocator base class has no equivalent, the standard pooling and
monotonic resources adhere to a managed allocator concept in that they have a release()
method.

Page 24 of 25

Works Cited
bloomberga. “Component bslma_default,” BDE API documentation, published

by Bloomberg.
https://bloomberg.github.io/bde-
resources/doxygen/bde_api_prod/group__bslma__default.html

bloombergb. “Component bslma_defaultallocatorguard,” BDE API
documentation, published by Bloomberg.
https://bloomberg.github.io/bde-
resources/doxygen/bde_api_prod/group__bslma__defaultallocatorguard.
html

bloombergc. BDE API documentation, published by Bloomberg.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/

cpp17. Programming Languages — C++, ISO/IEC 14882:2017(E), Geneva,
Switzerland: International Organization for Standardization/
International Electrotechnical Commission, 2017.

denning68. P. Denning. “The Working Set Model for Program Behavior,”
Communications of the ACM, 11:5, May 1968.
Accessed at http://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf

feher18. A. Feher and A. Meredith. “Add Test Polymorphic Memory Resources
to the Standard Library,” C++ Standards Committee Working Group
ISOCPP, Technical Report P1160R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p1160r0.pdf

halpern20a. P. Halpern and J. Lakos. “Value Proposition: Allocator-Aware (AA)
Software,” C++ Standards Committee Working Group ISOCPP, Technical
Report P2035R0, 2020.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/
p2035r0.pdf.

halpern20b. P. Halpern. “Making C++ Types Allocator-Aware (AA),” C++
Standards Committee Working Group ISOCPP, Technical Report D2127,
forthcoming.

lakos16. J. Lakos, J. Mendelsohn, A. Meredith, and N. Myers. “On Quantifying
Memory-Allocation Strategies (Revision 2),” C++ Standards Committee
Working Group ISOCPP, Technical Report P0089R1, 2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
p0089r1.pdf

Page 25 of 25

weis20. A. Weis. “Implementing Effective BDE/PMR-Style Allocators,” C++
Standards Committee Working Group ISOCPP, Technical Report D2129,
forthcoming.

References
denning05. P. Denning. “The Locality Principle,” Communications of the ACM,

48:7, July 2005.
http://denninginstitute.com/pjd/PUBS/CACMcols/cacmJul05.pdf

lakos19. J. Lakos. “Value Proposition: Allocator-Aware (AA) Software,” C++
Conference (CppCon), Aurora, CO, September 2019.
https://www.youtube.com/watch?v=ebn1C-mTFVk&feature=youtu
.be&t=290

