Exhaustiveness Checking for Pattern Matching

Document #: P2211R0

Date: 2020-11-16

Project: Programming Language C++
Audience: Evolution

Reply-to: Bruno Cardoso Lopes

<bruno.cardoso@gmail.com>
Sergei Murzin
<smurzin@bloomberg.net >
Michael Park
<mcypark@gmail.com>
David Sankel
<dsankel@bloomberg.net >
Dan Sarginson
<dsarginson@bloomberg.net>
Bjarne Stroustrup
<bjarne@stroustrup.com>

Contents
1 Abstract 2
2 Introduction 2
3 Examples 2
3.1 Exhaustive Patterns e 2
3.2 Fundamental Types e e 3
3.3 ENUM e e e 3
3.4 Classes and tuple-like Types o L e 4
3.5 wvariant-like Types L e 5
3.6 Special Cases e e e 7
3.6.1 Class Hierarchy Matching 7
3.6.2 Pattern Guards e e 7
3.6.3 Dereference Extractorso 8
3.6.4 General Extractors L 9
4 Specification 9
4.1 gmatch and guards L. e 10
4.2 g-values for fundamental types 10
4.3 g¢-match for fundamental types L 10
4.4 enum tyPes e e e e 10
4.5 Classes o o e e e 10
4.6 Tuple-like types L e 11
4.7 Variant-like types L e 11
4.8 Any-like types. e 11
5 Patterns for Invariant Checking 12
6 Analysis of alternatives 13
6.1 Use warnings instead of errors L 13

mailto:bruno.cardoso@gmail.com
mailto:smurzin@bloomberg.net
mailto:mcypark@gmail.com
mailto:dsankel@bloomberg.net
mailto:dsarginson@bloomberg.net
mailto:bjarne@stroustrup.com

6.2 Require pedantically exhaustive enum inspection oL oL 13

7 Conclusion 13
8 References 13
1 Abstract

With the planned introduction of pattern matching into C++, there’s an opportunity to give it support for “ex-
haustiveness checking” which enables compile-time detection and diagnosis of several common pattern matching
bugs. This paper describes the design for such a feature that intentionally caters to typical software engineering
patterns and commonly understood semantics, as opposed to a pedantic interpretation of code. It is our hope
that such a design will maximize this feature’s utility as a bug prevention mechanism.

enum Color { Red, Green, Blue };

/..
Color c = /*...*x/;
vec3 v = inspect(c) { // ERROR: Missing case 'Blue'’
case Red => vec3(1.0, 0.0, 0.0);
case Green => vec3(0.0, 1.0, 0.0);
g
vec3 v2 = inspect(c) { // OKAY
case Red => vec3(1.0, 0.0, 0.0);
case Green => vec3(0.0, 1.0, 0.0);

case Blue => vec3(0.0, 0.0, 1.0);
Ig

2 Introduction

This paper describes a mechanism that allows for compilation errors for inspect expressions that that aren’t
exhaustive, i.e. none of the patterns match a particular value. Without such a feature, the best a compiler could
do in such a situation is produce a warning and, if unheeded, undefined behavior or some other failure mode
would result at runtime.

The “Examples” section of this paper builds up our proposed semantics using a series of code snippets. It is our
intent that this section be easily understood by those already familiar with [P1371R2]. This section is a followed
by a “Specification” section that includes a formal treatment of the semantics. The remaining sections consider
some special cases and alternatives.

In all our examples, we utilize the pattern matching syntax specified in [P1371R2| for expressions. While it is
known that several syntax changes will be made in the next revision of that paper, none of those changes are
expected to impact exhaustiveness checking semantics.

We implemented a proof-of-concept exhaustiveness checker that implements the design described by this paper
in [Reflmpl]. It is an adaptation of the efficient algorithm described by Luc Maranget in [maranget_2007].

3 Examples
This section presents our proposed exhaustiveness checking semantics by building on a series of simple examples.

3.1 Exhaustive Patterns

Exhaustive patterns are patterns that match any possible value for a given type. The wildcard pattern (__) in
the third arm of the inspect statement below is one such pattern, but the literal 2 in the second arm is not.

inspect(i) -> std::ostream& {
1 => std::cout << "one";
2 => std::cout << "two";
=> std::cout << "something else";

}

Binding patterns, such as x in the following example, are also exhaustive.
inspect(i) -> std::ostream& {

1 => std::cout << '"one";

2 => std::cout << "two";

x => std::cout << x;

}

Finally, structured binding patterns where every subpattern is exhaustive is also an exhaustive pattern as in the
two arms of the inspect expression below. We’ll delve into more detail on structured binding patterns later.

struct Point { int xCoordinate; int yCoordinate; }
struct Box { Point topLeft; int width; int height };

inspect (box) {
[t1, w, h] => /*...%/;
[[x,y], w, h]l => /*...x/;
}

3.2 Fundamental Types

The following example results in a compilation error because ther isn’t a pattern that matches the value false.
bool b = /*...*/;
char const * const str = inspect(b) { true => "true"; }; // ERROR: missing

// false pattern

This error can be fixed by adding an exhaustive pattern.

char const * const str = inspect(b) {

true => "true";

__=> "false"; // OKAY, pattern ezhaustive
I8

bool happens to be a fundamental type that doesn’t always require an arm with an exhaustive pattern. Providing
a false pattern can also be used to fix the error.
bool b = /*...*/;
char const * const str = inspect(b) {
true => "true'";
false => "false"; // OKAY, all walues are covered.

s
Other fundamental types with a small number of values (e.g. std: :nullptr_t) behave in a similar way. Types

populated with many values (e.g. int) require an exhaustive pattern arm.

3.3 enum

enum types present an interesting case. The example below is an error because the Blue enumerator isn’t covered
by one of the inspect arms.

enum Color { Red, Green, Blue };

/.

Color c = /*...*/;

vec3 v = inspect(c) { // ERROR: Missing case 'Blue'’
case Red => vec3(1.0, 0.0, 0.0);
case Green => vec3(0.0, 1.0, 0.0);

};

This can be fixed by adding a pattern for the missing Blue enumerator.

vec3 v = inspect(c) { // OKAY
case Red => vec3(1.0, , 0);

’

)

o O
~

0, 0.0, O.
case Green => vec3(0.0, 1.0, O.
case Blue => vec3(0.0, 0.0, 1.

};

> >

The astute reader will point out that enums can have values different from their enumerators. Our Color type,
for example, can take on the value 4. While almost all enum types have this behavior defined, it is relatively rare
that extra-enumerator values are considered “valid” for the type from an application semantic perspective. For
this reason, we do not require an exhaustive pattern for enum types.

However, we still need to define what happens at runtime when an extra-enumerator value is inspected and no
patterns match. Considering the various options available (e.g. undefined behavior or throwing an exception), a
call to std: :terminate seems the most palatable.

Color val_outside_enumerators = static_cast<Color>(3);

vec3 v = inspect(val_outside_enumerators) { // 'std::terminate' at runtime
case Red => vec3(1.0, 0.0, 0.0);
case Green => vec3(0.0, 1.0, 0.0);
case Blue => vec3(0.0, 0.0, 1.0);

g

Those desiring different behavior in this situation are free to add a wildcard arm with their desired behavior
by throwing an exception, as in the snippet below, or calling something like std: :unreachable ([P0627R3]) if
undefined behavior is desired.

Color val_outside_enumerators = static_cast<Color>(3);

vec3 v = inspect(val_outside_enumerators) { // Throw exception at runtime
case Red => vec3(1.0, 0.0, 0.0);
case Green => vec3(0.0, 1.0, 0.0);
case Blue => vec3(0.0, 0.0, 1.0);

=> throw Up{};

};

3.4 Classes and tuple-like Types

Exhaustiveness checking for classes and tuple-like types is defined in terms of exhaustiveness checking of their
underlying types. Note how in the example below, flagsV1 is inspected with the combination of wildcards and
literals.
struct FlagsV1l {

bool firstFlag;

bool secondFlag;
+;

inspect (flagsV1l) {

[false, false] => /*..
[true , false] => /*..
[__ , true] => /*..

};

L/
k)
.*/;

In the definition of FlagsV2 below, a defaulted operator== is provided. This allows us to freely mix constexpr
value patterns and structured binding patterns.

struct FlagsV2 {
bool firstFlag;
bool secondFlag;

bool operator==(const FlagsV2&) const = default;

};

constexpr auto allFalse = FlagsV2{ .firstFlag=false,

inspect (flagsV2) {

case allFalse => /*..
[true, false] => /*..
[, true] => /*..

};

.secondFlag=false };

/5
L%/
Lx/

Note that this mixture of constexpr value matching and structured binding matching for exhaustiveness checking
does not work for custom operator== implementations.

struct FlagsV3 {
bool firstFlag;
bool secondFlag;

bool operator==(const FlagsV3& other) const {

return firstFlag

== other.firstFlag &&

secondFlag == other.secondFlag;

};
};

constexpr auto allFalse = FlagsV3{ .firstFlag=false,

inspect (flagsV3) {

case allFalse => /*..
[true, false] => /*..
[__ , true] => /*..

};

.secondFlag=false };

.x/;
7%
.*/; // ERROR: {false, false} case not handled.

This behavior results from the difficulty (it’s undecidable) of determining if an arbitrary operator== function
behaves identically to the conjunction of equality of a class’s fields.

3.5 variant-like Types

Exhaustiveness checking for variant-like types work in a similar way to enums.

In the following code, we create a Command type alias whose values are either FireBlasters or Move objects.
This could, for example, represent a command in an X-Wing simulator.

struct FireBlasters{
int intensity;

bool operator==(const FireBlasters&) const = default;

I8
enum Direction{ Left, Right };

struct Move{
Direction direction;
bool operator==(const FireBlasters&) const = default;

};

using Command = std::variant<FireBlasters, Move>;

The following function converts Command objects into strings. It, however, has a bug in that moving right isn’t
covered by any of the inspect expressions arms. This is detected and will produce an error at compile time.

std: :string cmdToStringV1(Command cmd) {
return inspect(cmd) {
<FireBlasters> [i] => std::format("Fire Blasters with power {}", 1i);
<Move> [case Left] => std::string("Move Left");

// ERROR: No coverage for '<Move> [Right]' walue.
+;
}

Adding a “move right” case fixes the issue.

std: :string cmdToStringV2(Command cmd) {
return inspect(cmd) { // OK
<FireBlasters> [i] => std::format("Fire Blasters with power {}", 1i);
<Move> [case Left] => std::string("Move Left");
<Move> [case Right] => std::string("Move Right");
};
}

3

The exceptionally sharp-witted reader will note that the “valueless by exception” state isn’t handled by the
inspect above even though it compiles. That is correct. As with enum, std: :terminate is called at runtime in
this situation.

Command pathological = /*...%*/; // Somehow put pathological in the
// 'valueless_by_exception' state.

auto s = cmdToStringV2(pathological); // 'std::terminate’

If there is desire to handle this case explicitly, one may use a wildcard.

std::string cmdToStringV3(Command cmd) {
return inspect(cmd) {
<FireBlasters> [i] => std::format("Fire Blasters with power {}", 1i);
<Move> [case Left] => std::string("Move Left");
<Move> [case Right] => std::string("Move Right");
__ => std::string("Pathological Command");
+;

I ooc
auto s = cmdToStringV3(pathological); // Assign 's' to "Pathological Command"

Note that this is analogous to enum behavior.

3.6 Special Cases

While we’ve provided examples of the core machinery above, but there are several special cases that also need
to be considered.

3.6.1 Class Hierarchy Matching

Consider a CommandV2 data structure that has the same use case as Command, but is instead implemented with
a class hierarchy.

struct CommandV2 {
virtual ~Command() = default;

};

struct FireBlastersV2 : CommandV2 {
int intensity;

};

struct MoveV2 : CommandV2 {
Direction direction;

+;

The first thing to note is that having patterns that match all the possible values will not satisfy the exhaustiveness
checker.

std::string cmdToStringV5(CommandV2 cmd) {
return inspect(cmd) {
<FireBlastersV2> [i] => std::format("Fire Blasters with power {}", i);
<MoveV2> [case Left] => std::string("Move Left");
<MoveV2> [case Right] => std::string("Move Right");

// ERROR, ezhaustive pattern required
+;
}

Instead, an exhaustive pattern is required when doing this kind of downcasting.

std: :string cmdToStringV5(CommandV2 cmd) {
return inspect(cmd) { // OK
<FireBlastersV2> [i] => std::format("Fire Blasters with power {}", i);
<MoveV2> [case Left] => std::string("Move Left");
<MoveV2> [case Right] => std::string("Move Right");
=> std::string("Unknown") ;

3.6.2 Pattern Guards

Pattern guards provide a convenient way to express runtime conditions for pattern arms. However, as the
example below illustrates, arms with guards are essentially ignored when making a compile-time exhaustiveness
checking determination.

int fib(int n) {

return inspect(n) { // ERROR: Patterns not ezhaustive
0 => 0;

1 => 1,;
n if (n >= 1) => fib(n-1) + fib(n-2);

};
}

n if (n < 0) => throw std::invalid_argument("fib called with negative");

inspect statements such as these can usually be rewritten to utilize exhaustive patterns as below.

int fib(int n) {

return inspect(n) { // OK
0 => 0;
1 => 1;

n if (n >= 1) => fib(n-1) + fib(n-2);

};
}

3.6.3 Dereference Extractors

Consider the following definition of BinaryTree.

struct BinaryTree;

struct Node { int value; };

struct Branch {
std::unique_ptr<BinaryTree> left;
std: :unique_ptr<BinaryTree> right;

s

struct BinaryTree : std::variant<Node, Branch>
using std::variant<Node, Branch>;

};

=> throw std::invalid_argument("fib called with negative");

{

The following function attempts to determine whether its argument has a depth of at least two. It makes use of
the conditional dereference extractor ((*?)) to reach within the unique_ptr values. Unfortunately, the runtime
nature of the conditional dereference extractor prevents compile-time determination of exhaustiveness.

bool depthAtLeastTwo(const BinaryTree & t) {

return inspect(t) { // ERROR: Pa
<Node> __
<Branch> [(*¥?7) <Branch> __, __]
<Branch> [__, (*7) <Branch> __]
<Branch> [(*7) <Node> __, (x7) <Node> __]

<Branch> [nullptr, nullptr]
+;
}

This can be fixed by replacing the <Branch> [nullptr
tive for the branch value.

bool depthAtLeastTwo(const BinaryTree & t) {

return inspect(t) { // OK
<Node> __ => false;
<Branch> [(*?7) <Branch> __, _]
<Branch> [__, (*?) <Branch> __]
<Branch> [(*7) <Node> __, (*7) <Node> __]
<Branch> __

I

}

tterns not exhaustive
=> false;

=> true;

=> true;

=> false;

=> false;

, nullptr] pattern with <Branch>

=> true;
=> true;
=> false;
=> false;

__ which is exhaus-

The unconditional dereference extractor ((*!)) on the other hand, because it is unconditional, contributes
directly to the exhaustiveness checking algorithm as in the following example. Note that there is no need for
nullptr handling in this example since the unconditional dereference extractor implies that null is not valid
input.

bool depthAtLeastTwo(const BinaryTree & t) {

return inspect(t) { // OK
<Node> __ => false;
<Branch> [(*!) <Branch> __, __] => true;
<Branch> [__, (*!) <Branch> __] => true;
<Branch> [(*!) <Node> __, (*!) <Node> __] => false;
Ig

}

For reference, we provide our preferred implementation below.

bool depthAtLeastTwo(const BinaryTree & t) {
assert(no_nulls(t));
return inspect(t) {

<Node> L => false;
<Branch> [(*!) <Node> __, (*!) <Node> __] => false;
=> true;

};
}

3.6.4 General Extractors
Like conditional dereference extractors, general conditional extractors do not contribute to pattern matching
exhaustiveness checking.

int val = inspect(str) { //ERROR: Non-ezhaustive
(regex_pat<"(\\d+)"> 7) [digits] => std::atoi(digits);

(regex_pat<".*x"> 7) L => -1;
}
Exhaustive patterns need to be used in conjunction with these patterns.
int val = inspect(str) { / /0K
(regex_pat<"(\\d+)"> 7) [digits] => std::atoi(digits);
—— => -1;
}

Similar to unconditional dereference extractors, general unconditional extractors do contribute to exhaustiveness
checking.

4 Specification

This section provides a formal specification of our exhaustiveness checking semantics. Both Pointer-like types
and extractor patterns are omitted and will be provided in a future revision of this document.

For an expression e of type T, any inspect expression,

inspect(e) {
/case;/ => code; // arm
/casey/ => codey, // army

/case,/ => code,, // arm,

3

, must, for every g-value (g;) of T, include an case (case;) that g-matches that g-value (g-match(g;, case;) =

true). ¢-values are defined on a per-type basis and the ¢-match function is defined on a per-pattern basis.
4.1 g-match and guards

Arms with guards do not contribute to compile-time exhaustiveness checking due to their runtime semantics.
Therefore, we have the following rule:

o g¢-match(v, pat inspect-guard) is false for every g-value v and pattern pat.

4.2 g-values for fundamental types

e std::nullptr_t is defined to have a single ¢g-value, nullptr.
e bool is defined to have two ¢-values, true, and false.
¢ The remaining fundamental types are defined to each have a single ¢-value e.

4.3 g-match for fundamental types

Three patterns apply to fundamental types: wildcards (wildcard-pattern), bindings (binding-pattern), and ex-
pressions (expression-pattern).

Wildcards and bindings, unsurprisingly, match any g¢-value.

o g-match(v, wildcard-pattern) is true for every g-value v
o g-match(v, binding-pattern) is true for every g-value v

Expression patterns ¢-match only when the expression evaluates to the particular g-value.
o g¢-match(v, expression-pattern) is true if the expression pattern evaluates to g-value v and false otherwise.

Note that because expression patterns cannot evaluate to €, g-match(€, ezpression-pattern) is always false.

4.4 enum types

Every enum type E is defined to have one g-value per enumerator e; defined by E. ¢-match is defined the same
as it is for fundamental types.

4.5 Classes

Classes without data members have a single ¢-value {} and we have the following rules:

o g-match({3}, wildcard-pattern) is true

o gmatch({3}, binding-pattern) is true

o g-match({3}, expression-pattern) is true
o g-match({}, [1) is true

Classes with data members have g-values based on their fields. These ¢-values are of the form { v;, vy, ..., v, }
where v; ranges over the g-values of the ith data member of the class. The following ¢-match rules apply:

o gmatch({ vy, vy, .., v, ¥, wildcard-pattern) is true

o gmatch({ vy, vy, .., v, }, binding-pattern) is true

o g-match({ vy, vy, .., v, }, [paty, paty, .., pat, 1) is true if ¢-match(v;, pat;,)=true for every i, and
false otherwise.

Expression patterns g-match classes only if the class type is said to have deep derived equality.

o gmatch({ vy, vy, .., v, }, expression-pattern) is true if { vy, vy, .., v, } has the same value as the
expression-pattern and the class being matched has deep derived equality.

A class C has deep derived equality if the following conditions are met:

10

1. C has a defaulted operator==.
2. All of C’s fields are std: :nullptr_t, bool, or are classes having deep derived equality.

Finally, classes that are polymorphic have the additional ¢-match rule:

o g-match(v, < type > paltern) is false

4.6 Tuple-like types

Tuple-like types are those that opt-in to structured binding syntax by specializing std: :tuple_size, std: :get,
and std: :tuple_element. Like classes, tuple-like types T have ¢-values of the form { v;, vy, ..., v, }, but where
v; ranges over the g-values of std: :tuple_element<i, T>::type.

The g-match rules are identical to those with classes except g-match always returns false for expression-patterns.

o g-match({ vy, vy, .., v, }, expression-pattern) is false if the class being matched is a tuple-like type.

4.7 Variant-like types

Variant-like types are those that opt-in to pattern matching syntax by specializing std::variant_size,
std::holds_alternative, std::get, and std::variant_alternative. g¢-values of variant-like types V
are of the form (4, v) where 0 <= { < std::variant_size<V>::value and v ranges over the g-values of
std::variant_alternative<i, V>::type.

Our matching rules are as follows:
o gmatch((4, v), wildcard-pattern) is true
o g¢-match((4, v), binding-pattern) is true
o g¢-match((4, v), expression-pattern) where epat is an expression-pattern is true if and only if

1. the expression evaluates to a value w where std: :holds_alternative<i>(w) = true,
2. g-match(v, std::get<i>(w)) = true,
3. the std::holds_alternative<:> specialization is constexpr, and
4. the std: :get<7> specialization is constexpr.
e g¢g-match((4, v), < auto > pat) is true if and only if g-match(v, pat) is true.
o gmatch((4, v), < concept > pat) is true if and only if std: :variant_alternative<i,V>::type satisfies
the concept and ¢-match(v, pat) is true.
o g-match((¢, v), < type > pat) is true if and only if std: :variant_alternative<i,V>::type is the same
as type and ¢g-match(v, pat) is true.

o gmatch((4, v), < constant-expression > pat) is true if and only if the expression evaluates to i and
g-match(v, pat) is true.

4.8 Any-like types

Any-like types are those that opt-in to pattern matching syntax by specializing the any_cast function template.
All such types A have a single g-value € with the following g-match rules.

o ¢-match(€, wildcard-pattern) is true

o g¢-match(€, binding-pattern) is true

o g-match(€, expression-pattern) is false
o g-match(€, < type > pattern) is false

11

5 Patterns for Invariant Checking

Consider this example program:
enum Color{ RED, GREEN, BLUE };

int main() {
// Assuming an 'enumerators' reflection factility
std: :for_each(enumerators<Color>(), [](Color c) {
std::cout << int(c) << " ="
<< inspect(c){ case RED => "Red";
case GREEN => "Green";
case BLUE => "Blue";
}
<< std::endl;

b
std::cout << "\nSelect a color: " << std::flush;
Color c;

std::cin >> c;

inspect(c) —-> std::ostream& {
case RED => std::cout << "(1,0,0)" << std::endl;
case GREEN => std::cout << "(0,1,0)" << std::endl;
__ => std::cerr << "Bad selection!" << std::endl;
g
}

Note that the second inspect statement has a bug: the BLUE case isn’t handled. Our exhaustiveness checking
algorithm will not catch this case because of the presence of the wildcard arm.

It would be nice to annotate the wildcard arm to somehow indicate that it is an error handling arm and should
not impact exhaustiveness checking.

One way to do this is to add a guard since the presence of a guard excludes an arm from exhaustiveness checking.
The following code will produce a compilation error as desired, indicating the missing BLUE case:

// OPTION 1

inspect(c) -> std::ostream& {
case RED : std::cout << "(1,0,0)" << std::endl;
case GREEN : std::cout << "(0,1,0)" << std::endl;
_ if(true) : std::cerr << "Bad selection!" << std::endl;

};

While this works, the if (true) syntax doesn’t capture the intent very well. If we want special syntax cheaply
we could allow the condition in the guard to be empty:

// OPTION 2

inspect(c) -> std::ostream& {
case RED : std::cout << "(1,0,0)" << std::endl;
case GREEN : std::cout << "(0,1,0)" << std::endl;
_ if() : std::cerr << "Bad selection!" << std::endl;

};_

Alternatively, we could use some kind of context-sensitive keyword (or annotation) to more directly indicate this
is an exceptional case:

12

// OPTION 3

inspect(c) -> std::ostream& {
case RED : std::cout << "(1,0,0)" << std::endl;
case GREEN : std::cout << "(0,1,0)" << std::endl;
_ exceptional : std::cerr << "Bad selection!" << std::endl;

};

Our preference is option 1 for core pattern matching. It demonstrates that we do not need special syntax or
additional complexity to handle this use case right now and it isn’t clear that this use case will be a prevalent
one. Options 2 and 3 could be added to the language later on if we see that the use case is more widespread.

6 Analysis of alternatives

Compilation errors due to inexhaustive patterns is not a new idea, although it is relatively rare. The Rust
programming language [RustLang] is a modern example.

6.1 Use warnings instead of errors

Most languages with pattern matching depend on compiler-provided warnings to discover bugs due to lacking
pattern coverage and, up until this point, this was our suggested approach. While developers could reap most of
the benefits of this proposal through use of an “error on warn” flag to their compilers, the advantages would be
seen primarily by large companies with uniform flag usage and advanced engineers who know enough to turn this
on. Unfortunately, this leaves the developers who are most likely to introduce these bugs, beginners to either
programming or C++, without adequate protection. By requiring exhaustiveness checking we enhance C++’s
image as language that provides safe constructs while maintaining a low performance overhead.

6.2 Require pedantically exhaustive enum inspection

One design alternative we considered is to require inspection of enum types to include an exhaustive pattern.
The benefit of that approach would be that the inspect construct matches more closely the precise language
semantics of enum.

While that argument is compelling, the opportunity to detect at compile-time one of the most common bugs
observed in practice (missing enumerators in a switch) is drastically more interesting. This feature alone is
expected to free up, in aggregate, vast monetary and personnel resources that would otherwise be spent on
issues resulting from these bugs.

7 Conclusion

In this paper we have presented a design for compile-time exhaustiveness checking for a C++ pattern matching
feature. This included an example-based tutorial, a precise specification, and consideration of related topics. In
our opinion, the benefits of such an enhancement significantly outweigh the drawbacks.

8 References

[maranget_ 2007] Luc Maranget. 2007. Warnings for pattern matching. Journal of Functional Programming 17,
(2007), 387-421.
https://github.com/camio/exhaustiveness_ checking

[P0627R3] Melissa Mears. 2018. Function to mark unreachable code.
https://wg21.link/p0627r3

13

https://github.com/camio/exhaustiveness_checking
https://wg21.link/p0627r3

[P1371R2] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson. 2020. Pattern Matching.
https://wg21.link /p1371r2

[Reflmpl] David Sankel. Exhaustiveness Checking Reference Implementation.
https://github.com/camio/exhaustiveness_ checking

[RustLang] Rust Website.
https://www.rust-lang.org/

14

https://wg21.link/p1371r2
https://github.com/camio/exhaustiveness_checking
https://www.rust-lang.org/

	Abstract
	Introduction
	Examples
	Exhaustive Patterns
	Fundamental Types
	enum
	Classes and tuple-like Types
	variant-like Types
	Special Cases
	Class Hierarchy Matching
	Pattern Guards
	Dereference Extractors
	General Extractors

	Specification
	q-match and guards
	q-values for fundamental types
	q-match for fundamental types
	enum types
	Classes
	Tuple-like types
	Variant-like types
	Any-like types

	Patterns for Invariant Checking
	Analysis of alternatives
	Use warnings instead of errors
	Require pedantically exhaustive enum inspection

	Conclusion
	References

