Trimming whitespaces before line splicing
Document #: P2223R2

Date: 2021-04-13

Project: Programming Language C++

Audience: EWG, CWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose to make trailing whitespaces after \ non-significant.

This paper has been extracted from P2178R0 [1] and is part of a larger effort from SG-16 to
improve lexing.

Revisions

Revision 2

* Wording changes as per CWG review (April 14).

Revision 1

* Make it clearer that raw strings are not impacted.

* Remove CWG 1698 fix following EWG guidance.

Making trailing whitespaces non-significant

There is a divergence of implementation in how compilers handle spaces between a backslash
and the end of a line.

int main() {
int 1 =1
/7 N\
+ 42

return i;

mailto:corentin.jabot@gmail.com
https://wg21.link/P2178R0

EDG(tested with icc front-end) GCC and Clang will trim the whitespaces after the backslash
- and return 1 - MSVC will not and return 43. Both strategies are valid as part of phase 1
"implementation-defined mapping”. There is a clang issue about this #15509

To avoid this surprising implementation divergence we proposed that an implementation
must trim all trailing whitespaces before handling \ splicing. This is reinforced by the fact that
IDES and tools (code formatter for example) may discard such whitespaces. The Google-style
guidelines forbid trailing whitespaces.

An additional or alternative approach is to deprecate \ that are not part of a preprocessor
directive. We are not proposing this at this time.

This proposal may be a silent breaking change for code that is only compiled with MSVC.
A quick analysis of the packages available in VCPKG didn't find any trailing whitespaces after
backslashes.

We have not been able to measure the impact of this proposed change in the MSVC ecosystem.
Other compilers, and all code supported by these compilers would be unaffected. However,
neither tools nor people can be expected to reliably preserve invisible character. The lack of
usefulness and the brittleness of relying on this behavior makes it unlikely to be relied upon.

GCC, Clang, and ICC provide a warning enabled by default warning: backslash and newline
separated by space.

Example

An example of actual issue encountered in the while is people using ASCII art and diagram in
comments (Thanks JF for the museum-worthy art piece).

int main() {
int hax = 9;
//
/7|
/7]
/0 | NN\
/7] [l I> <
/7| [_IN__, _/_/_\
hax = 1337;
return hax;

String literals

Another interesting example

auto str "\<space>

n,
’

Is an empty string in GCC, ICC, Clang and the string "\ " in MSVC. As '\ ' is not a valid escape
sequence, the above code is ill-formed in MSVC.

https://bugs.llvm.org/show_bug.cgi?id=15509

Raw string literals

The proposed trimming is intended to be reversed in raw string literals. However, the reversal
of line splicing in raw strings might not be sufficiently specified, leading to some implemen-
tation divergence and open GCC issues #91412, #43606, which the present paper doesn't
intend to address.

The proposed wording modifies splicing and splicing is entirely reversed in raw string literals
(5.4.3.1), as such we the proposed wording does not change the current raw string literals
behavior.

Whitespaces?

The proposed wording as well as the standard don't specify what characters are considered
whitespaces. This will be addressed separately (see P2178R0 [1]), but the intent is that
characters considered whitespaces for the purpose of lines splicing be the same as whitespace
characters in the rest of the grammar. This includes tabs and other characters considered
whitespaces by the Unicode standard.

C compatibility

In effect, the "implementation defined mapping: in phase one makes the content of the
program implementation defined, and it is a valid behavior in C and C++ alike to trimm or
not trailing whitespaces. The proposed change only requires that all C++ compilers do this
trimming, and therefore doesn't affect C compatibility.

Proposed Wording

Modify 5.2.1.2 of [N4861] as follows:

¥ Lexical conventions [lex]

72 Phases of translation [lex.phases]

Each instance sequence of a backslash character (\) immediately followed by zero or more
whitespace characters other than new-line followed by a new-line character is deleted, splicing
physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. Except for splices reverted in a raw
string literal, if a splice results in a character sequence that matches the syntax of a universal-
character-name, the behavior is undefined. A source file that is not empty and that does not

end in a new-line character, or that ends in a rew-line characterimmediately preceded-bya
backslash-character-before-any such-splicing-takesplace splice, shall be processed as if an

additional new-line character were appended to the file.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91412
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43606
https://wg21.link/P2178R0

References

[1] Corentin Jabot. P2178R0: Misc lexing and string handling improvements. https://wg21.
link/p2178r0, 6 2020.

[UAX-14] UNICODE LINE BREAKING ALGORITHM
https://www.unicode.org/reports/tri14/

[Unicode] Unicode 13
http://www.unicode.org/versions/Unicode13.0.0/

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.1ink/N4861

https://wg21.link/p2178r0
https://wg21.link/p2178r0
https://www.unicode.org/reports/tr14/
http://www.unicode.org/versions/Unicode13.0.0/
https://wg21.link/N4861

	1 Abstract
	2 Revisions
	3 Making trailing whitespaces non-significant
	3.1 Example
	3.2 String literals
	3.3 Raw string literals
	3.4 Whitespaces?
	3.5 C compatibility

	4 Proposed Wording
	5 Lexical conventions
	6 Phases of translation
	7 References

